首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the impact of imperfect channel state information (CSI) on the performance of bit-interleaved coded modulation with iterative decoding (BICM-ID) over fading channels. We develop a general, accurate and efficient theoretical error-free feedback bound (EF bound) to analyze the asymptotic bit-error rate (BER) of BICM-ID with imperfect CSI, and predict the BER floor due to channel estimation error. The convergence to the EF bound and the accuracy of the BER floor prediction are verified by simulation with various sets of code and channel parameters. These results are canonical, in that they apply to a variety of system configurations. Pilot symbol assisted modulation is used as a particular example for Rayleigh-fading channels.  相似文献   

2.
A new suboptimal demodulator based on a singular value decomposition for estimation of unitary matrices is introduced. Noncoherent communication over the Rayleigh flat fading channel with multiple transmit and receive antennas, where no channel state information is available at the receiver is investigated. Codes achieving bit-error rate (BER) lower than 10/sup -4/ at bit energy over the noise spectral density ratio (E/sub b//N/sub 0/) of 1.6-1.9 dB from code restricted capacity limit were found. At higher data rates, computation of code restricted capacity is impractical. Therefore, the mutual information upper bound of the capacity attaining isotropically random unitary transmit matrices was used. The codes achieve BER lower than 10/sup -4/ at E/sub b//N/sub 0/ of 3.2-6 dB from this bound, with coding rates of 1.125-5.06 bits per channel use, and different modulation decoding complexities. The codes comprise a serial concatenation of turbo code and a unitary matrix differential modulation code. The receiver employs the high-performance coupled iterative decoding of the turbo code and the modulation code. Information theoretic arguments are harnessed to form guidelines for code design and to evaluate performance of the iterative decoder.  相似文献   

3.
A new suboptimal demodulator based on iterative decision feedback demodulation (DFD), and a singular value decomposition (SVD) for estimation of unitary matrices, is introduced. Noncoherent communication over the Rayleigh flat-fading channel with multiple transmit and receive antennas, where no channel state information (CSI) is available at the receiver is investigated. With four transmit antennas, codes achieving bit-error rate (BER) lower than 10/sup -4/ at bit energy over the noise spectral density ratio (E/sub b//N/sub o/) of -0.25 dB up to 3.5 dB, with coding rates of 1.6875 to 5.06 bits per channel use were found. The performance is compared to the mutual information upper bound of the capacity attaining isotropically random (IR) unitary transmit matrices. The codes achieve BER lower than 10/sup -4/ at E/sub b//N/sub o/ of 3.2 dB to 5.8 dB from this bound. System performance including the iterative DFD algorithm is compared to the one using Euclidean distance, as a reliability measure for demodulation . The DFD system presents a performance gain of up to 1.5 dB. Uncoded systems doing iterative DFD demodulation and idealized pilot sequence assisted modulation (PSAM) detection are compared. Iterative DFD introduces a gain of more than 1.2 dB. The coded system comprises a serial concatenation of turbo code and a unitary matrix differential modulation code. The receiver employs the high-performance coupled iterative decoding of the turbo code and the modulation code. Information-theoretic arguments are harnessed to form guidelines for code design and to evaluate performance of the iterative decoder.  相似文献   

4.
Performance of bit interleaved space-time coded modulation (BI-STCM) with iterative decoding is discussed over fast correlated Rayleigh and Rician fading channels. Asymptotic BER is analyzed through a general and tight error-free feedback bound ( EF bound ). The convergence to the EF bound and the accuracy of the prediction is verified by simulations. It is observed that on the sixth iteration, the performance almost reaches the theoretical bound in the range of 7-8 dB for Alamouti space-time code ( 1 receive antenna ).  相似文献   

5.
In this correspondence, we present a comprehensive performance analysis of orthogonal space-time block codes (STBCs) with receive antenna selection. For a given number of receive antennas M, we assume that the receiver uses the best L of the available M antennas, where, typically, L/spl les/M. The selected antennas are those that maximize the instantaneous received signal-to-noise ratio (SNR). We derive explicit upper bounds on the bit-error rate (BER) performance of the above system for any M and L, and for any number of transmit antennas. We show that the diversity order, with antenna selection, is maintained as that of the full complexity system, whereas the deterioration in SNR is upper-bounded by 10log/sub 10/(M/L) decibels. Furthermore, we derive a tighter upper bound for the BER performance for any N and M when L=1, and derive an expression for the exact BER performance for the Alamouti scheme when L=1. We also present simulation results that validate our analysis.  相似文献   

6.
The SONET OC-192 receiving performance of In/sub 0.53/Ga/sub 0.47/As p-i-n photodiode grown on linearly graded metamorphic In/sub x/Ga/sub 1-x/P buffered GaAs substrate is reported. With a low-cost TO-46 package, such a device exhibits a frequency bandwidth up to 8 GHz, a bit-error rate (BER) of 10/sup -9/ at 10 Gb/s, a sensitivity of -17.8 dBm, and a noise equivalent power of 3.4/spl times/10/sup -15/ W/Hz/sup 1/2/ owing to its ultralow dark current of 3.6/spl times/10/sup -7/ A/cm/sup 2/. Eye diagram analysis at 10 Gb/s without transimpedance amplification reveals a statistically distributed Q-factor of 8.21, corresponding to a minimum BER of 1.1/spl times/10/sup -16/ at receiving power of -6 dBm.  相似文献   

7.
This paper investigates the bit error rate (BER) performance of digital modulations in a system with a scanning reflectarray antenna. A reflectarray causes intersymbol interference (ISI) in a digitally modulated signal, its phase shifters' phase errors cause signal distortion, and its phase shifters' phase transient causes beam pattern degradation during direction switching. In this paper, composite signal models of the reflectarray are established for both static and transient states. Due to different feed-to-element distances and the element-to-observation distances, different delays exist in signal components. These delays cause ISI whose effect is analyzed and evaluated. Effects of phase shifters' phase errors and phase transient during beam switching are also analyzed and evaluated. Numerical calculations and simulations are performed. The analytical and simulation results for an example reflectarray at f/sub c/=26.5 GHz and bit rate of 1.325 Gbps show that the BER degradation due to ISI is proportional to the symbol rate and the loss ranges from about 1 dB to around 2 dB in E/sub b//N/sub o/, depending on original E/sub b//N/sub o/, for BPSK, QPSK, 8PSK, and 16QAM. The phase error effect is negligible for lower order modulations and is unacceptable for higher order modulations such as 64QAM and 256QAM. The degradation due to phase transient effect is about 2 dB for BPSK and QPSK.  相似文献   

8.
Investigates bit error rate (BER) performance of a GMSK frequency detection system. The channel measurement information (CMI) for a bit in the received block is calculated from samples of the received signal envelope (R/sub s/) and the demodulator output (eye level). The CMIs of eye level*R/sub s/ and of R/sub s//sup 2/ are investigated, and the decoding performances for the CMIs are compared using the Hamming (7, 4) code in nonfading (static) and fading channels in laboratory experiments.<>  相似文献   

9.
We present new bounds for the rate loss of multiresolution source codes (MRSCs). Considering an M-resolution code, the rate loss at the ith resolution with distortion D/sub i/ is defined as L/sub i/=R/sub i/-R(D/sub i/), where R/sub i/ is the rate achievable by the MRSC at stage i. This rate loss describes the performance degradation of the MRSC compared to the best single-resolution code with the same distortion. For two-resolution source codes, there are three scenarios of particular interest: (i) when both resolutions are equally important; (ii) when the rate loss at the first resolution is 0 (L/sub 1/=0); (iii) when the rate loss at the second resolution is 0 (L/sub 2/=0). The work of Lastras and Berger (see ibid., vol.47, p.918-26, Mar. 2001) gives constant upper bounds for the rate loss of an arbitrary memoryless source in scenarios (i) and (ii) and an asymptotic bound for scenario (iii) as D/sub 2/ approaches 0. We focus on the squared error distortion measure and (a) prove that for scenario (iii) L/sub 1/<1.1610 for all D/sub 2/相似文献   

10.
We show that the capacity of a Gaussian multiple access channel can be approached by interleaved low-rate codes together with a simple chip-by-chip iterative decoding strategy. Based on a rate /spl ap/ 1/69 code and with a total of 35 simultaneous users (the aggregate rate /spl ap/ 1/2), performance of BER=10/sup -5/ is observed at E/sub b//N/sub 0/ /spl ap/ 1.4 dB, which is close to the corresponding capacity limit (E/sub b//N/sub 0/ /spl ap/ 0 dB).  相似文献   

11.
Adachi  F. Sawahashi  M. 《Electronics letters》1992,28(17):1579-1581
The average bit error rate (BER) performances of 16 square/star QAM and 16 CPSK/DPSK under Rayleigh fading are theoretically analysed and compared. 16 star QAM is inferior to 16 square QAM, which achieves the best performance, by approximately 4 dB in the required average E/sub b//N/sub 0/; however, when compared with differentially encoded square QAM, the performance inferiority is less than 2 dB.<>  相似文献   

12.
A compact [200/spl times/200 /spl mu/m/sup 2/] wavelength-selective switch based on thermally tunable SiO/sub 2/--Si/sub 3/N/sub 4/ microring resonators has been designed and realized. The switch supports gigabit filtering applications in access networks. Spectral measurements show an ON-OFF ratio of 12 dB and a channel separation of 20 dB. The 10-Gb/s measurements on a single ring show no degradation of the modulated signal and a theoretical BER (bit-error rate) <10/sup -12/.  相似文献   

13.
The performance of digital communication systems over generalized-K (K/sub G/) fading channels is analyzed and evaluated. Novel closed form expressions for the SNR statistics, the average Shannon's channel capacity and the bit error rate (BER) are derived. These expressions are used to study important performance criteria such as the outage performance, the average capacity and the BER for a great variety of modulation formats in K/sub G/ fading channels. The proposed mathematical analysis is accompanied with various performance evaluation results, which demonstrate the usefulness of the proposed approach.  相似文献   

14.
A mixed-signal integrated circuit for FM-DCSK modulation   总被引:1,自引:0,他引:1  
This paper presents a mixed-signal application-specific integrated circuit (ASIC) for a frequency-modulated differential chaos shift keying (FM-DCSK) communication system. The chip is conceived to serve as an experimental platform for the evaluation of the FM-DCSK modulation scheme, and includes several programming features toward this goal. The operation of the ASIC is herein illustrated for a data rate of 500 kb/s and a transmission bandwidth in the range of 17 MHz. Using signals acquired from the test platform, bit error rate (BER) estimations of the overall FM-DCSK communication link have been obtained assuming wireless transmission at the 2.4-GHz ISM band. Under all tested propagation conditions, including multipath effects, the system obtains a BER =10/sup -3/ for E/sub b//N/sub o/ lower than 28 dB.  相似文献   

15.
We have investigated and tried to improve the packaging technologies for a bit-error-rate (BER) measurement system for high-T/sub c/ superconducting circuits. Signal cables, test fixture, and magnetic shields were specially designed and assembled for the BER measurement system, taking into account electrical losses, signal reflection, heat inflow, and power consumption of a cryocooler. BER was further improved by changing the way of connection between the semiconductor amplifiers outside the sample vacuum chamber. These improvements led to a BER less than 10/sup -12/ at an output voltage (V/sub out/) of 1.7 and 2.3 mV for a 50-/spl Omega/ standard microstrip transmission line and a superconducting microstrip-line to coplanar-waveguide transmission-line converter, respectively. The temperature rise of the test fixture was as low as about 2 K. These values are approximately one order of magnitude smaller than those in the previous measurement system and small enough to be achieved by using superconducting interface circuits. Furthermore, 1-Gb/s operation of a superconducting quantum interference device array-type interface circuit was demonstrated in the BER measurement system at 40 K.  相似文献   

16.
For space-time bit-interleaved coded modulation (ST-BICM) systems with iterative decoding, the overall performance is affected by the chosen mapping. In bit-error rate (BER) curves, one mapping reaches an error floor (EF) at a low signal-to-noise ratio (SNR), while other mappings result in a lower EF at a higher SNR. The constellation mappings are divided into groups where each group exhibits a distinctive BER curve. We show that the convergence abscissa of the system depends on the average total bit errors and the harmonic mean of the minimum squared Euclidean distance. In this letter, we characterize all mapping groups for ST-BICM with 8-phase-shift keying and present the optimal selection for each mapping group over independent fading channels  相似文献   

17.
New, good (K, 1/N) convolutional codes are tabulated for3 leq K leq 7and2 leq N leq 8, which were selected based on the criterion of minimizing the required signal-to-noise ratio (SNR) for given desired bit error rates (BER). A transfer function upper bound was used to find the BER performance. Partial searches were performed using the idea that "good codes generate good lower rate codes." The new codes save signal energy up to 0.4 dB compared to previously reported codes of the same parameters.  相似文献   

18.
The performance of a set of linear reduced-rank multistage filter banks is studied in the context of multiuser detection for direct-sequence (DS) code-division multiple-access (CDMA) systems. The set of filter banks under consideration is comprised of the minimum mean-square error (MMSE), the minimum output energy (MOE), the best linear unbiased estimator (BLUE), and the maximum-likelihood (ML) detector. Based on a common framework for the multistage implementations of the aforementioned filter banks, the signal-to-interference plus noise ratios (SINRs) and bit-error rates (BERs) of these reduced-rank filter banks are studied for multipath Rayleigh-fading channels. A generic BER formula is provided for coherent detection and noncoherent differential detection schemes constructed under this common framework. Analysis shows that all of these performance measures are characterized by a kernel matrix K/sub mmse/ whose trace forms the output SINR of the MMSE filter bank. Through investigating the recursive structure of K/sub mmse/, the output SINRs are proven to be monotonically increasing with the number of stages and upper-bounded by a number equal to the paths of the desired user's channel. The condition for asymptotically achieving this upper bound is also provided, which leads to the notion of effective user capacity of linear reduced-rank multiuser detection as well as serves as a test for the existence of a BER floor for coherent detection. In addition, the channel mismatch due to differential detection is also shown to yield a BER floor for noncoherent detection. Based on this analysis, a simple yet effective rule for choosing the number of stages is provided for both coherent and noncoherent linear multistage multiuser detection.  相似文献   

19.
Ma  X.R. Xu  Y.Y. 《Electronics letters》2006,42(15):869-870
An efficient, iterative soft-in-soft-out decoding scheme is employed for the parallel and serially concatenated single parity check (SPC) product codes, which has very low complexity, requiring only two addition-equivalent-operations per information bit. For a rate 0.8637 of parallel concatenated SPC product code, a performance of BER=10/sup -5/ at E/sub b//N/sub 0/=3.66 dB can be achieved using this decoding scheme, which is within 1 dB from the Shannon limit.  相似文献   

20.
In this paper intrachannel nonlinearities in a return-to-zero differential-phase-shift-keyed (RZ-DPSK) 40-Gb/s 32/spl times/100-km system are compensated in the absence of signal power symmetry using a single LiNbO/sub 3/ conjugator and results in two decades of improvement in bit-error rate (BER). The reduction of transmission impairments enables the reach of the system to be extended from 5200 to 6400 km with a measured BER =5/spl times/10/sup -4/. This paper also presents a first-order perturbation analysis that describes the effects of optical-phase conjugation and dispersion mapping on the optical field of pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号