首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
通过采用有限元与多层网格法,求解热传导和对流方程,建立了模拟快速激光重熔的二维瞬态模型,并用该模型模拟了高扫描速度(2m/s)与低扫描速度(0.2m/s)情况下,时变的脉冲激光与连续激光重熔的物理过程。模拟结果显示,激光扫描速度对熔池内的流线分布的较大影响,从而影响到重熔后材料表面的成分分布。低扫描速度不材料表面同一区域可被多个脉冲加热,而高扫描速度下只被一个脉冲加热。熔池表面的形状在重熔过程中呈现中心凹陷,边缘凸起。此外,还通过模拟结果得到了熔池的大小、形状、平均冷却速度和边缘材料冷却速度,这些冷却速度对于分析材料表面的微观结构是有用的。  相似文献   

2.
复合涂层激光熔池温度场及流场的数值模拟   总被引:9,自引:3,他引:6  
曾大文  谢长生 《激光技术》2000,24(6):370-374
建立了复合涂层激光熔池三维准稳态流场及温度场的数值模型,计算出熔池温度分布和速度分布及几何形状。分析了激光功率对熔池温度场、流场及形状的影响。计算结果表明,对于厚度为0.08mm的Ti-Al(30%)复合涂层系统,功率为750W时,复合涂层没有熔化,但Al基材产生熔化;功率为1400W时,在不同材料层内形成上下两个分离的熔池。复合涂层先熔化还是Al基材先熔化,依赖复合涂层厚度。激光重熔实验确认了分离熔池的存在,同时计算结果和实验结果基本吻合。  相似文献   

3.
针对选区激光熔化(SLM)工艺参数的匹配性对成形质量的影响,选取三种激光功率在不同的扫描速度和扫描方式下进行实验,研究了激光功率对熔池形貌及残余应力的影响。结果表明:随着激光功率增大,熔池的几何尺寸和成形件中的残余应力均变大。这主要是因为在上述参数序列下,随着激光功率增大,热流密度增大,相同层厚与截面下的温度梯度增大,熔池温度升高,熔池尺寸变大,从而导致成形件熔融时的晶面夹角及晶界间距较大,进而产生了较大的热应力,成形件冷却凝固后的残余应力过大。在实际应用中,通过合理设计匹配的工艺参数,可以得到较适合的熔池几何尺寸(即较合理的温度梯度分布),从而减小热应力,进而减小残余应力,得到成形质量较高的SLM工件。  相似文献   

4.
为了研究多道搭接对激光重熔等离子喷涂NiCoCrAl-Y2O3涂层熔化的影响,根据激光重熔的特点,采用ANSYS有限元软件的参数化设计语言,在已有的单道激光重熔温度场模型基础上,建立了TiAl合金表面多道搭接激光重熔连续移动三维温度场有限元模型.温度场的分析结果表明:由于激光扫描的热积累效应,重熔过程中试样的温度越来越高,熔池也越来越大,各扫描道之间存在明显的差异,因此不能获得熔化均匀且稀释率小的高质量重熔层.采用逐道减小激光功率或增大扫描速度的策略可以获得大体相同的各扫描道熔池;采用预热试样法同样可以有效地减轻各扫描道之间熔池的差异.  相似文献   

5.
为建立工艺参数与熔覆层几何特征的关系模型,分析了粉末在高斯光束中的吸热过程、有效利用率及基体熔化吸收的能量,推导出熔覆层儿何特征(熔覆层宽、熔覆层高、熔池深)数学模型.仿真结果表明:激光熔覆几何特征与工艺参数关系密切,其中熔覆层宽度与光束直径和送粉速率成正比;熔覆层高度与送粉速率成正比,与扫描速度成反比;熔池深度与激光功率成正比.这与实验获得的规律是一致的.  相似文献   

6.
金属粉末选区激光熔化成形过程温度场模拟   总被引:2,自引:0,他引:2  
利用ANSYS有限元软件对选区激光熔化(Selective Laser Melting,SLM)成形过程的三维瞬态温度场的分布变化进行了数值模拟;在考虑材料的热物性参数随温度变化和相变非线性行为的情况下,建立了选择性激光熔化(SLM)的三维温度场有限元模型;并利用ANSYS参数化设计语言(APDL)实现了激光高斯热源的移动加载.模拟结果表明随着扫描时间的增加,由于热积累效应,熔池的温度越来越高,热影响区也随之增大;熔化成形过程中,光斑中心的前端存在较大的温度梯度;扫描速度小,容易造成液相的流动,出现孔洞,扫描速度过大,则粉末不能完全熔化;模拟得到的结果与实验结果相吻合.  相似文献   

7.
激光熔注WCp/Ti-6Al-4V梯度复合材料层形成机制   总被引:2,自引:1,他引:1  
采用激光熔注(LMI)技术在Ti-6Al-4V表面制备了WCp/Ti-6Al-4V梯度复合材料(MMC)层,对其形成机制进行了研究.研究结果表明,WC颗粒在复合材料层中的分布与其初始速度v0、穿越熔池表面最小临界速度vmin以及熔池粘度η有关.由于WC陶瓷颗粒密度大,在激光熔注过程中具有较高的动能,熔池粘度不再是决定梯度复合材料层形成的关键因素.对于WC/Ti材料体系,熔池凝固前沿是形成WCp/Ti-6Al-4V梯度复合材料层的重要因素,复合材料层不同深度范围内WC颗粒的数量由这一深度熔池凝同前沿长度所决定.WC颗粒注入位置对其在复合材料层中的分布有很大影响.在WC颗粒由熔池后部"拖尾"注入的情况下,该区域熔池深度较浅,WC颗粒遇到的熔池凝固前沿位于较高的位置,大多数WC颗粒被"冻结"在复合材料层的上部,进而形成了WCp/Ti-6Al-4V梯度复合材料层.  相似文献   

8.
选区激光熔化零件的性能与工艺参数影响的表面质量和内部缺陷是密切相关的,为了深入了解表面质量和内部缺陷与工艺参数之间的关系,以提高成形质量。通过研究不同激光功率和扫描速度制备的选区激光熔化样品的晶粒形貌、致密度和显微硬度。结果表明,随着激光功率的增大,熔池宽度逐渐增大,熔池轨迹更加清晰连续,致密度和硬度呈先增大后减小的趋势;随着扫描速度的增大,熔池宽度减小,熔池轨迹越来越无规则且不连续,致密度和硬度先增大后减小;选区激光熔化316L不锈钢样品均有奥氏体单相构成,不受激光功率和扫描速度的影响。另外,熔池宽度分别与激光功率、扫描速度符合二次多项式数学关系;xoy平面的晶粒尺寸要略小于yoz平面的晶粒尺寸,晶粒大小的差异导致显微硬度的不同,xoy平面上显微硬度都略大于yoz平面上硬度,产生各向异性;孔洞数量少的致密度相对较大,当致密度达到最大98.74%时,显微硬度也达到最大,xoy平面上硬度为227.5 HV,yoz平面上硬度为210.1 HV。  相似文献   

9.
采用Ansys有限元分析软件,对选择性激光熔化成形高熵合金CoCrFeMnNi的温度场分布进行数值模拟。在考虑随温度变化的热物理参数情况下,建立选择性激光熔化有限元模型,利用在Ansys-Workbench中插入参数化设计语言,实现高斯锥形体热源的加载,研究功率和速度对成形过程温度场的影响。模拟结果表明:在单层多道模拟时,随着SLM激光功率增大和扫描速度的下降,SLM成形HEA CoCrFeMnNi的熔池长度和宽度呈增大趋势;先扫描的区域会对未扫描的区域起预热作用且存在热积累现象,在平行于SLM激光扫描方向存在较大的温度梯度。  相似文献   

10.
CO2激光熔凝中熔池冷却过程检测研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研究激光熔凝温度场的分布,采用非接触式的直接检测方法,研制了一套新型激光熔池动态检测系统,实时拍摄了激光熔凝中熔池冷却过程热辐射图像,进行了理论分析和实验验证,取得了熔池冷却时非稳态温度场分布数据。结果表明,激光熔凝熔池冷却过程分为熔化凝固和固态降温两个过程,检测得到了熔化时间、凝固时间、熔池温度场分布、熔池尺寸等信息。这一结果对于激光熔凝工艺参数的优化选择设计是有帮助的。  相似文献   

11.
为了揭示激光熔覆工艺参数对铁基TiC复合熔覆层成形质量的作用规律、优化激光熔覆工艺参数,使用YAG固体激光器在60Si2Mn基体上激光熔覆铁基TiC复合涂层,基于响应面法建立输出电流、脉冲宽度、扫描速率与熔覆层宽度、高度、熔池深度、宽高比、稀释率以及硬度之间的数学模型,并对模型进行方差分析,获得了工艺参数与成形质量之间...  相似文献   

12.
快速轴流CO2激光器激光相变硬化处理HT250的研究   总被引:9,自引:3,他引:6  
用快速轴流CO2 激光器对HT2 5 0进行激光相变硬化处理 ,优化出处理HT2 5 0所需的合理工艺参数匹配 ,并从硬化带尺寸、微观组织形态、硬化带内硬度分布等方面分析了快速轴流CO2 激光器进行激光相变硬化处理过程中 ,工艺参数对硬化区的影响 ;实际试验证明只要工艺参数选取适当 ,轴流激光器也可用于热处理 ;实验中发现当用某些参数处理材料时 ,由于表面张力的作用 ,试样的表面精度有所提高。根据试验结果拟合出所有工艺参数中两个最重要参数 :激光功率密度 q ,激光扫描速度V 的关系曲线 ,给出了相应的公式  相似文献   

13.
42CrMo钢因具有良好的淬透性、强度以及韧性,被广泛应用于拉矫辊制造中,但是这种材料的耐蚀性、耐磨损性及耐疲劳性还不够理想,限制了拉矫辊连续工作能力。为进一步提高拉矫辊基材强度和耐磨损性能,利用激光熔凝技术对调质后42CrMo钢进行了激光强化工艺研究。采用光学显微镜、金相显微镜、显微硬度计、摩擦磨损试验机等仪器对42CrMo钢激光熔凝后的显微组织、相结构、强度及摩擦磨损性能进行了分析,研究了激光功率、扫描速度对熔凝层性能的影响规律。结果表明:工艺参数对熔凝区力学性能影响较大,激光功率显著影响熔凝层的深度,扫描速度影响表面成形质量;调质后42CrMo钢基体组织主要为回火马氏体+残余奥氏体,经过激光熔凝后,基体组织发生转变,马氏体含量显著提高。  相似文献   

14.
AZ91HP镁合金真空激光熔凝的微观组织与性能   总被引:4,自引:0,他引:4  
在真空条件下对AZ91HP镁合金进行了激光熔凝处理。研究结果表明,镁合金激光熔凝层均是由α3/Mg和β-Mg17Al12相所构成,且随激光扫描速度的增加,β-Mg17Al12相的相对含量降低。随着激光扫描速度的增加,由于熔凝层组织细化,致使其硬度、耐磨性、减磨性和耐蚀性增加,但因熔凝层中β-Mg17Al12相的相对含量较高,使得激光熔凝层的耐蚀性较镁合金为低。  相似文献   

15.
石岩  张宏  徐春鹰  王存山 《激光技术》2003,27(2):113-115
利用扫描电镜、透射电镜和图像分析仪,对18Cr2Ni4W钢渗碳激光强化复合处理试样微观组织进行了较细致的研究。结果表明,18Cr2Ni4W钢在复合工艺作用下,随着表面硬化区层深的变化,其组织结构发生明显变化;由于钢中存在大量的合金元素,致使表面硬化层产生大量的残留奥氏体,降低了表面的硬度;随着激光扫描速度的增加,硬化区硬度增大。  相似文献   

16.
U74钢轨表面激光淬火工艺及其对耐磨性的影响   总被引:2,自引:0,他引:2  
本文研究了U74钢轨表面激光淬火工艺及其对表面耐磨性能的影响。激光淬硬层分为表面过热区、均匀相变区和过渡区。淬硬层深度约为0.5-0.8mm,单道淬火宽度约4mm,表面硬度可达Hv850-Hv1000,淬硬层组织为高碳马氏体,细晶混合马氏体和少量奥氏体。激光淬火造成的组织细化和大量高碳马氏体的形成是硬度提高的主要原因。在扫描速度为6mm/秒,离焦量60mm的条件下,U74钢轨表面激光淬火的最佳功率约为1.8kW。在该功率下,可以获得最高硬度、最大硬化层深度和最佳能量利用系数。摩擦学试验表明,经过激光淬火,钢轨表面的耐磨性能有了明显提高。  相似文献   

17.
郑克全  张思玉 《激光技术》1991,15(5):294-297
本文介绍了在20#钢表面进行不同激光扫描速度的Ti-C合金化处理,并对合金层的显微组织结构、相形貌、硬度和耐磨性进行了测试和分析,结果表明合金层的硬度和耐磨性有很大提高,同时激光扫描速度对Ti-C合金层组织也有很大的影响。  相似文献   

18.
激光重熔镍基合金火焰喷焊层组织及性能   总被引:3,自引:1,他引:2  
洪永昌 《中国激光》2008,35(9):1388-1394
利用金相显微镜(OM)、扫描电镜(SEM)和X射线衍射仪(XRD)分析不同激光工艺参数重熔后的Ni基合金火焰喷焊层及其经不同温度回火处理的显微组织和相组成,并进行了显微硬度和耐磨性测定.试验结果表明,重熔喷焊层的组织主要由γ-(Ni,Fe)固溶体和Cr23C6,Cr7C3,Cr2B,Cr2B,Fe3B,Fe2B等组成,与火焰喷焊层相比,显微组织得到进一步细化,硬度和耐磨性都有较大幅度的提高.在相同工艺条件下,激光扫描速度愈快,显微组织愈敛密、细小,硬度和耐磨性愈好,但重熔喷焊层的熔深较浅;不同激光工艺参数的重熔喷焊层,经不同温度回火后,硬度都得到了进一步的提高;扫描速眨为360 mm/min,经600 C×3 h回火后的重熔喷焊层硬度相比为最高.采用合适的激光重熔处理工艺及随后的热处理,或使Ni基合金火焰喷焊层进一步强化,使用性能得到进一步改善.  相似文献   

19.
利用激光熔覆技术分别对Fe105和Ni60合金粉末进行单层单因素实验。采用OLS41003D激光显微镜测量了熔道截面形貌、尺寸及组织;利用显微硬度仪测量了Fe105和Ni60涂层的显微硬度。结果表明,功率对Fe105和Ni60合金粉末熔宽、熔深和熔高的影响呈正相关;扫描速度对熔道熔高、熔宽和熔深呈负相关;随着送粉量增加,熔高增加,熔深下降。与Ni60显微组织图相比,Fe105合金粉末的晶体排列更规则,晶粒细小;Fe105与Ni60涂层平均显微硬度都高于484.63HV,Fe105涂层显微硬度总体略高于Ni60涂层。  相似文献   

20.
为了能够明确激光熔覆技术对体育器材硬度的改善效果,提出分别从复合涂层、层间停光时间以及激光扫描速度方面变量参数进行硬度影响分析,研究三氧化二铝含量对复合熔覆层形貌、显微硬度和耐磨性能的影响,多层熔覆对激光熔覆层微观组织和硬度的影响,激光扫描速度对熔覆层宏观形貌、相组成、显微组织、成分及硬度分布等影响。进行了理论分析和实验验证,结果表明,随熔覆层表面距离增加,激光熔覆层显微硬度会减小,器材硬度会呈现出先增加后减小趋势;第二层熔覆距离降低使第一层中硬度随距离减少而提高;通过增大扫描速度,熔覆层的组织有细化趋势,组织不均匀性得到改善,同时熔覆层厚度降低,稀释率减小,使熔覆层平均硅含量提高,显微硬度改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号