首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
将8-hydroxy-quinolinato lithium(Liq)掺入4'7-diphyenyl-1,10-phenanthroline(BPhen)作为n型电子传输层(ETL),将tetrafluro-tetracyano-quinodimethane(F4-TCNQ)掺入4,4',4"-tris(3-methylphenylphenylamono)triphenylamine(m-MTDATA)作为p型空穴传输层(HTL),制作了p-i-n结构有机电致发光器件.为了检验传输层传导率的改善情况,制备了一系列单一空穴器件和单一电子器件.在引入BPhen:33wt% Liq作为ETL后,x% F4-TCNQ:m-MTDATA作为HTL后,器件的电流和功率效率明显改善.与控制器件(未掺杂)相比,性能最佳的掺杂器件的电流及功率效率分别提高了51%和89%,电压下降了29%.这是由于传输层传导能力的提高使得载流子在发光区域达到有效平衡.  相似文献   

2.
具有复合空穴传输层的高效低压有机电致发光器件   总被引:2,自引:2,他引:0  
报道了用m-MTDATA掺杂NPB作复合空穴传输层(c-HTL)的高效率、低电压有机电致发光器件(OLED),器件的最高发光效率达到了5.3cd/A,比NPB作HTL的器件(3.4cd/A)提高了约50%.这是由于c-HTL具有较低的空穴迁移率,改善了发光层中两种载流子的平衡,从而提高了器件性能.进一步在ITO与c-H...  相似文献   

3.
研究了Liq:Bphen混合层的电子传输特性.采用该混合层作为共基质电子传输层制备了结构为[ITO/m-MTDATA/NPB/Alq3/Liq(33%):Bphen/LiF/Al]的有机发光器件,基于共基质电子传输层的器件驱动电压比传统器件降低了13%而效率却提高了21%.研究袁明通过优化混合层的掺杂浓度,可以显著提高电子传输层的导电率,降低驱动电压,从而提高器件的效率.  相似文献   

4.
具有高效空穴注入的高电子传输层的白光电致发光器件   总被引:1,自引:1,他引:0  
以M003或m-MTDATA作为空穴注入层,Alqa或Bphen作为电子传输层组合了4组白色有机电致发光器件.发光层为9,10-bis(2-naphthyl)-2-t-butylanthracene(TBADN)掺杂3%的P-bis(P-N,N-diphenyl-aminos-tyryl)benzene(DSA-ph)作为蓝色掺杂剂和0.05%的4-(dicyanomethylene)-2-t-bul:yl-6-(1,1,7,7,-tetramethyl-julolidy-9-enyl)-4H-pyran(DCJTB)作为红色掺杂剂.研究表明基于M003//Bphen结构的器件大大降低了驱动电压,改善了功率效率,在电流密度为20 mA/cm2时,其值分别为5.43 V和4.54 lm/W.与基于m-MTDA-TA//Alq3结构的器件相比,驱动电压降低了40%,功率效率提高57%.  相似文献   

5.
分别在ITO与NPB间加入高迁移率的m-MTDATA:x%4F-TCNQ来增强器件的空穴注入,在阴极和发光层之间加入高迁移率的Bphen:Liq层增强器件的电子注入,制备了结构为ITO/m-MTDATA:x%4F-TCNQ/NPB/Alq_3/Bphen:Liq/LiF/Al的有机发光器件.研究了传输层的单载流子器件行为,同时,由于注入的电子和空穴数量偏离平衡,器件的整体效率也会受到影响,在实验中通过调节4F-TCNQ的质量百分比,来调控空穴的注入和传输,使载流子达到了较好的平衡.器件的最大电流效率和流明效率分别达到了6.1 cd/A和5.2 lm/W.  相似文献   

6.
通过将Liq(8-hydroxyquinolinato-lithium)掺入电子传输层Alq(tris(8-hydroxyquinolinato)aluminum)中,制备了具有不同结构的仅传输电子的单载流子器件。实验结果表明,掺杂器件的电性能劣于含Liq/Al复合阴极的非掺杂器件,优于含Al阴极的非掺杂器件,这表明掺入Alq的Liq没有产生明显的“n型掺杂”效应,其具有双重作用:掺杂后分散在Alq/Al阴极界面上的Liq以电子注入层的形式出现,通过增强电子注入来提高器件电流;掺杂后存在于Alq体相中的Liq由于自身的导电性差,对电子传输具有不利影响,从而降低了器件的电流。在电致发光器件的测试中,Liq的掺杂表现出类似的现象,掺入Liq的器件性能介于非掺杂具有Liq/Al阴极和Al阴极结构器件之间,三种器件的最大电流效率分别为3.96,4.27和2.27cd/A,并且在吸收光谱和光致发光光谱中观察不到电荷转移所带来的额外变化。  相似文献   

7.
研究了结构为ITO/m-MTDATA:x%4F-TCNQ/NPB/TBADN:EBDP:DCJTB/Bphen:Liq/LiF/Al的有机白光电致发光器件(WOLED)。分别在ITO与NPB间加入高迁移率的m-MTDATA:4F-TCNQ来增强器件的空穴注入,在阴极和发光层间加入高迁移率的Bphen:Liq层增强器件的电子注入,降低驱动电压,提高器件效率。同时,由于注入的电子和空穴数量偏离平衡,器件的效率也会受到影响。实验中,通过调节4F-TCNQ的掺杂浓度来调控空穴的注入和传输,使载流子达到高度平衡。器件的最大电流效率和流明效率分别达到了9.3cd/A和4.6 lm/W。  相似文献   

8.
器件结构是影响有机发光器件(OLED)性能的重要因素之一.采用8-hydroxyquinoline-aluminum(AlQ)作为发光层(EML)和电子传输层(ETL),polyvinylcarbazole (PVK)作为空穴传输层(HTL),制备了具有有机小分子/聚合物异质结结构的OLED器件,通过其电压-电流-发光亮度(V-J-B)特性测试,研究了HTL的引入及其膜厚对器件性能的影响.实验结果表明,HTL的引入有效地改善了OLED的光电性能,同时HTL膜厚对器件性能具有显著影响,当HTL膜厚为20 nm时,所制备的OLED器件具有最小的驱动电压和启亮电压、最大的发光亮度和发光效率.
Abstract:
The device construction plays an important role in improving the optoelectronic performance of organic electroluminescence devices (OLEDs). Heterojunction OLEDs with a configuration of glass/ITO/PVK/AlQ/Mg/Al were fabricated by using 8-hydroxyquinoline-aluminum (AlQ) as the emission layer (EML) and electron transport layer (ETL) and polyvinylcarbazole (PVK) as the hole transport layer (HTL). The effect of the HTL thickness on the performance of OLEDs was investigated with respect to the driving voltage, turn-on voltage, electroluminescence brightness and efficiency of the devices. Experimental results demonstrate that the optical and electrical properies of OLEDs are closely related to the HTL thickness. The device fabricated with the HTL thickness of 20 nm possesses the best photoelectric properties such as the minimum driving voltage and turn-on voltage, and the maximum electroluminescence brightness and efficiency.  相似文献   

9.
杨惠山  黄淑华 《半导体光电》2013,34(3):370-373,387
采用蓝色荧光材料1p-TDPVBi结合绿色磷光材料2Ir(ppy)3掺杂到母体材料CBP作为绿光发光层,并且采用3BPhen作为电子传输层和激子阻挡层制备结构为ITO/m-MTDATA(50nm)/NPB(10nm)/p-TDPVBi(dnm)/CBP∶Ir(ppy)38%7nm/BPhen(60nm)/LiF(1nm)/Al的有机发光器件。实验结果表明:通过改变蓝光发光层p-TDPVBi的厚度,得到了高效率的有机发光器件,当p-TDPVBi厚度为5nm时,器件的电流效率和功率效率在4V时达到32.3cd/A和25.3lm/W,亮度在11V时达到31 020cd/m2。研究了p-TDPVBi厚度由3nm变化到9nm,OLED器件的电流密度-电压特性曲线、亮度-电压曲线及电流效率-电压和功率效率-电压等光电性能的变化。  相似文献   

10.
以杂化白光结构ITO/HAT-CN(10 nm)/TAPC(30 nm)/TCTA(10 nm)/TCTA:PO -01(10 nm ,4%)/MADN:DSA-ph(10 nm,5%)/BPhen(40 n m)/Liq(1nm)/Al(100 nm)为基础,分别用CBP 、SO和SO:TCTA作为间隔层,调节厚度及掺杂比例,研究不同间隔层对杂化白光器件性能的 影响。实验结果表明,SO作间隔层可以有效提高电子与空穴在黄光层的复合,增大器件电子 传输能力而使器件偏向白光,提高器件效率,且由于SO高的三线态能级,可以有效控制激子 复合区域的移动,器件色稳定性也得到提高。再将TCTA与SO掺杂作为间隔层,增强空穴传输 ,调控空穴和电子的传输与平衡,进一步提升器件性能,当SO∶TCTA掺杂比为9∶1时,有最大电流效 率31.60 cd/A,最大功率效率30.16 lm/W,电 流密度为10 mA/cm2时,CIE色坐标为(0.39 ,0.43),从0.1 mA/cm2-80 mA/cm2电流密度变化下色坐标变化(Δx,Δy)仅为(0.02),色坐标漂移小,色稳定性好。  相似文献   

11.
An efficient inverted polymer solar cell is enabled by incorporating an n-type doped wide-gap organic electron transporting layer (ETL) between the indium tin oxide cathode and the photoactive layer for electron extraction. The ETL is formed by a thermal-deposited cesium carbonate-doped 4,7-diphenyl-1,10-phenanthroline (Cs2CO3:BPhen) layer. The cell response parameters critically depended on the doping concentration and film thickness of the Cs2CO3:BPhen ETL. Inverted polymer solar cell with an optimized Cs2CO3:BPhen ETL exhibits a power conversion efficiency of 4.12% as compared to 1.34% for the device with a pristine BPhen ETL. The enhanced performance in the inverted device is associated with the favorable energy level alignment between Cs2CO3:BPhen and the electron-acceptor material, as well as increased conductivity in the doped organic ETL for electron extraction. The method reported here provides a facile approach to optimize the performance of inverted polymer solar cells in terms of easy control of film morphology, chemical composition, conductivity at low processing temperature, as well as compatibility with fabrication on flexible substrates.  相似文献   

12.
This study demonstrated p-i-n organic light-emitting diodes (OLEDs) incorporating a novel n-doping transport layer which is comprised of cesium iodide (CsI) doped into tris-(8-hydroxyquinoline) aluminum (Alq3) as n-doping electron transport layer (n-ETL) and a p-doping hole transport layer (p-HTL) which includes molybdenum oxide (MoO3) doped into 4,4′,4″-tris[2-naphthyl(phenyl)amino] triphenylamine (2-TNATA). The device with a 15 wt.% CsI-doped Alq3 layer shows a turn on voltage of 2.4 V and achieves a maximum power efficiency of to 4.67 lm/W as well, which is significantly improved compared to these (3.6 V and 3.21 lm/W, respectively) obtained from the device with un-doped Alq3. This improvement is attributed to an increase in the number of electron carriers in the transportation layer leading to an efficient charge balance in the emission zone. A possible mechanism behind the improvement is discussed based on X-ray photoelectron spectroscopy (XPS).  相似文献   

13.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

14.
High-power-efficiency blue fluorescent organic light-emitting devices have been demonstrated by simultaneously doping two hole-conduction layers of 4, 4', 4"-Tris(N-3-methylphenyl-N-phenyl-amino) triphenylamine (m-MTDATA), and N, N'-diphenyl-N, N'-bis(1-naphthyl)-(1, 1'-biphenyl)-4, 4' -diamine (NPB) with 2, 3, 5, 6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4-TCNQ) as well as doping two ambipolar emission layers with p-bis(p-N, N-diphenyl-aminostyryl) benzene (DSA-Ph). By doping the two host layers with DSA-Ph to form the double emission layer, the current efficiency is enhanced due to the extended emission zone. We further increase the performance by introducing the doping F4-TCNQ into the hole-injection and transporting layers to reduce the transport barrier at the m-MTDATA:F4TCNQ/NPB and to enhance the hole injection and conduction. The luminance and power efficiencies reach 8.9 cd/A and 4.5 lm/W, respectively.  相似文献   

15.
In general, electron transport layer (ETL) in organic light-emtting diodes (OLEDs) consists of single component of electron transporting material (ETM) or a mixture with n-dopant such as 8-hydroxyquinolinolato-lithium (Liq). However, there exists a limit to controlling a wide range of carrier density in OLEDs according to the required characteristics of the devices due to electrically insulating property of Liq. Here, we suggest a universal strategy to construct an efficient ETL. We synthesized two ETMs, diphenyl-[4-(10-phenyl-anthracene-9-yl)-phenyl]-amine (An-Ph) and phneyl-[4-(10-phenyl-anthracene-9-yl)-phenyl]-pyridin-3-yl-amine (An-Py) that have the same core structures with different polarities in functional groups. The electrical characteristics of electron-only-devices (EODs) were investigated by space charge limited current (SCLC) modeling and impedance spectroscopy analysis. Interestingly, the homostructure type ETL composed of An-Ph and An-Py showed not only superior electron transporting capability, but also the possibility of controlling electron injection and transporting in a wide range compared to the heterostructure type ETL of An-Ph and Liq. Compared to the An-Ph-only EOD, the electron mobility in 75% An-Py-mixed homostructure EOD increased by almost 4 orders of magnitude. Such dramatic variation of electron mobility was achieved thanks to the molecular design strategy to separate charge injection and charge transport regions within a molecule, which consequently induced the giant surface potential (GSP) effect between the ETL/cathode interface. As a result, the external quantum efficiency (EQE) of blue fluorescent and phosphorescent OLEDs with the homostructure ETLs was enhanced by 28.6% and 34%, respectively, compared to that of each control device without manipulating outcoupling effects.  相似文献   

16.
杨惠山 《光电子快报》2013,9(4):250-253
A hole-blocking layer (HBL) of 4,7-diphenyl-1,10-phenanthroline (BPhen) is incorporated between the emitting layer (EML) and the electron transport layer (ETL) for a tris-(8-hydroxyqunoline)aluminum based organic light-emitting device (OLED). Such a structure helps to reduce the hole-leakage to the cathode, resulting in an improved current effi-ciency. The BPhen improves the balance of hole and electron injections. The current efficiency is improved compared with that of the device without the blocking layer. The highest luminous efficiency of the device with 6 nm BPhen acting as a blocking layer is 3.44 cd/A at 8 V, which is improved by nearly 1.5 times as compared with that of the de-vice without it.  相似文献   

17.
The electron mobilities of 4, 7-diphenyl-1, 10-phenanthroline (BPhen) doped 8-hydroxyquinolinatolithium (Liq) at various thicknesses (50-300 nm) have been estimated by using space-charge-limited current measurements. It is observed that the electron mobility of 33 wt% Liq doped BPhen approaches its true value when the thickness is more than 200 nm. The electron mobility of 33 wt% Liq doped BPhen at 300 nm is found to be ~5.2 × 10~(-3) cm~2/(V·s) (at 0.3 MV/cm) with weak dependence on electric field, which is about one order of magnitude higher than that of pristine BPhen (3.4 × 10~(-4) cm~2/(V·s)) measured by SCLC. For the typical thickness of organic light-emitting devices, the electron mobility of doped BPhen is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号