首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

2.
《Optical Fiber Technology》2014,20(5):443-452
This paper focuses on random dual-link failure protection in multi-dimensional node based optical networks. The scenarios of dual-link failure are divided into different types in terms of time and space. And then, the model of pre-configured prism (p-Prism) is built by several pillars and two cycles as the top and bottom to deal with simultaneous dual-link failure. In-depth theoretical analysis is made that p-Prism employs less protection links than p-Cycle. Based on the theory, an efficient integer linear program (ILP) for p-Prism design is formulated, whose objective is to minimize the total protection links. Two protection resource reservation schemes are proposed for different quality of protection requirement. Planar protection routing algorithm (PPRA) on p-Prism is introduced to recover the two failed links. Numeric results show that each of the two schemes can deal with simultaneous dual-link failure. Compared with p-Cycle protection method, p-Prism has better performance at both static and dynamic indexes, such as protection link number, resource redundancy, average protection hops and so on.  相似文献   

3.
In this paper, we investigate the problem of enhancing dual-failure restorability in path protected mesh-restorable optical Wavelength Division Multiplexed (WDM) networks. Recent studies have demonstrated the need to survive simultaneous dual-link failures and have also provided solutions for handling such failures. A key finding of these early efforts is that designs providing complete (i.e. 100%) protection from all dual-failures need almost triple the spare capacity compared to a system that protects against all single-link failures. However, it has also been shown that systems designed for 100% single-link failure protection can provide reasonable protection from dual-link failures [M. Clouqueur, W. Grover, Mesh-restorable networks with 74 enhanced dual-failure restorability properties, in: Proc. SPIE OPTICOMM, Boston, MA, 2002, pp. 1-12]. Thus, the motivation for this work is to develop a hybrid mechanism that provides maximum (close to 100%) dual-failure restorability with minimum additional spare capacity.The system architecture considered is circuit-switched with dynamic arrival of sessions requests. We propose an adaptive mechanism, which we term active protection, that builds upon a proactive path protection model (that provides complete single-failure restorability), and adds dynamic segment-based restoration to combat dual-link failures. The objective is to optimize network survivability to dual-link failures while minimizing additional spare capacity needs. We also propose a heuristic constraint-based routing algorithm, which we term best-fit, that aids backup multiplexing among additional spare paths towards this goal. Our findings indicate that the proposed active protection scheme achieves close to complete (100%) dual-failure restorability with only a maximum of 3% wavelength-links needing two backups, even at high loads. Moreover, at moderate to high loads, our scheme attains close to 16% improvement over the base model that provides complete single-failure restorability. Also, the best-fit routing algorithm is found to significantly assist backup multiplexing, with around 15%-20% improvement over first-fit at all loads. The segment-based restoration algorithm reiterates the importance of utilizing wavelength converters in protection and is seen to provide around 15%-20% improvement over link restoration especially at moderate to high loads.  相似文献   

4.
Network survivability is a crucial requirement in high-speed optical networks. Typical approaches of providing survivability have considered the failure of a single component such as a link or a node. We motivate the need for considering double-link failures and present three loopback methods for handling such failures. In the first two methods, two edge-disjoint backup paths are computed for each link for rerouting traffic when a pair of links fails. These methods require the identification of the failed links before recovery can be completed. The third method requires the precomputation of a single backup path and does not require link identification before recovery. An algorithm that precomputes backup paths for links in order to tolerate double-link failures is then presented. Numerical results comparing the performance of our algorithm with other approaches suggest that it is possible to achieve almost 100% recovery from double-link failures with a moderate increase in backup capacity. A remarkable feature of our approach is that it is possible to trade off capacity for restorability by choosing a subset of double-link failures and designing backup paths using our algorithm for only those failure scenarios.  相似文献   

5.
Survivable WDM mesh networks   总被引:9,自引:0,他引:9  
In a wavelength-division-multiplexing (WDM) optical network, the failure of network elements (e.g., fiber links and cross connects) may cause the failure of several optical channels, thereby leading to large data losses. This study examines different approaches to protect a mesh-based WDM optical network from such failures. These approaches are based on two survivability paradigms: 1) path protection/restoration and 2) link protection/restoration. The study examines the wavelength capacity requirements, and routing and wavelength assignment of primary and backup paths for path and link protection and proposes distributed protocols for path and link restoration. The study also examines the protection-switching time and the restoration time for each of these schemes, and the susceptibility of these schemes to multiple link failures. The numerical results obtained for a representative network topology with random traffic demands demonstrate that there is a tradeoff between the capacity utilization and the susceptibility to multiple link failures. We find that, on one hand, path protection provides significant capacity savings over link protection, and shared protection provides significant savings over dedicated protection; while on the other hand, path protection is more susceptible to multiple link failures than link protection, and shared protection is more susceptible to multiple link failures than dedicated protection. We formulate a model of protection-switching times for the different protection schemes based on a fully distributed control network. We propose distributed control protocols for path and link restoration. Numerical results obtained by simulating these protocols indicate that, for a representative network topology, path restoration has a better restoration efficiency than link restoration, and link restoration has a faster restoration time compared with path restoration.  相似文献   

6.
Resilient optical networks are predominately designed to protect against single failures of fiber links. But in larger networks, operators also see dual failures. As the capacity was planned for single failures, disconnections can occur by dual failures even if enough topological connectivity is provided. In our approach the design of the network minimizes the average loss caused by dual failures, while single failures are still fully survived. High dual failure restorability is the primary aim, capacity is optimized in a second step. For WDM networks with full wavelength conversion, we formulate mixed integer linear programming models for dedicated path protection, shared (backup) path protection, and path rerouting with and without stub-release. For larger problem instances in path rerouting, we propose two heuristics. Computational results indicate that the connectivity is of much more importance for high restorability values than the overall protection capacity. Shared protection has similar restorability levels as dedicated protection while the capacity is comparable to rerouting. Rerouting surpasses the protection mechanisms in restorability and comes close to 100% dual failure survivability. Compared to single failure planning, both shared path protection and rerouting need significantly more capacity in dual failure planning.  相似文献   

7.
This study investigates the problem of fault management in a wavelength-division multiplexing (WDM)-based optical mesh network in which failures occur due to fiber cuts. In reality, bundles of fibers often get cut at the same time due to construction or destructive natural events, such as earthquakes. Fibers laid down in the same duct have a significant probability to fail at the same time. When path protection is employed, we require the primary path and the backup path to be duct-disjoint, so that the network is survivable under single-duct failures. Moreover, if two primary paths go through any common duct, their backup paths cannot share wavelengths on common links. This study addresses the routing and wavelength-assignment problem in a network with path protection under duct-layer constraints. Off-line algorithms for static traffic is developed to combat single-duct failures. The objective is to minimize total number of wavelengths used on all the links in the network. Both integer linear programs and a heuristic algorithm are presented and their performance is compared through numerical examples.  相似文献   

8.
Hybrid survivability approaches for optical WDM mesh networks   总被引:1,自引:0,他引:1  
This paper studies the problem of providing recovery from link failures in optical wavelength division multiplexing (WDM) networks. One of the widely studied mechanisms is dynamic link restoration, which provides recovery by determining restoration paths around a link after a failure occurs. This mechanism leads to a lower backup resource utilization, fast failure signaling rate, and a scalable operation. However, one of the main drawbacks of uncoordinated dynamic restoration is the inability to provide a 100% recovery for all connections, especially at high network loads. An alternate solution is proactive protection, where backup capacity is reserved during connection setup that can guarantee recovery under certain conditions (e.g., single link failures) but requires higher backup capacity and has low spare capacity utilization when failures do not occur. This paper presents two hybrid survivability approaches that combine the positive effects of restoration and protection. The proposed algorithms make use of available or collected network state information, such as link load, to identify critical links or segments in the network that are then proactively protected. The overall goal of the proposed approaches is to improve the restoration efficiency by providing a tradeoff between proactive protection and dynamic restoration. This paper presents a detailed performance analysis of the proposed algorithms. Experimental results show that under high loads, both the proposed approaches maintain a consistent restoration efficiency of at least 10%, or higher, when compared to the basic restoration scheme.  相似文献   

9.
Link recovery in high-speed four-fiber networks can be achieved using dynamic searches, covers of rings, or generalized loopback. We present a method to provide link recovery for all links in a network without using all links for backup traffic transmission. The method extends generalized loopback to operate on a subgraph of the full backup graph. The backup capacity on such links can then be used to carry unprotected traffic, i.e., traffic that is not recovered in case of a failure, while primary fibers on the links retain failure protection. Although all primary fibers remain fully robust to single-link failures, reserving links for unprotected traffic reduces a network's ability to recover from multiple failures. We explore the tradeoff between capacity and robustness to two-link failures for several typical high-speed optical fiber networks, comparing the properties of three link-restoration algorithms based on generalized loopback with the properties of covers of rings. Our results demonstrate robustness comparable or superior to that available with covers of rings while providing an additional unprotected traffic capacity of roughly 20% of the network's primary capacity  相似文献   

10.
Finding a disjoint path pair is an important component in survivable networks. Since the traffic is carried on the active (working) path most of the time, it is useful to find a disjoint path pair such that the length of the shorter path (to be used as the active path) is minimized. In this paper, we first address such a Min-Min problem. We prove that this problem is NP-complete in either single link cost (e.g., dedicated backup bandwidth) or dual link cost (e.g., shared backup bandwidth) networks. In addition, it is NP-hard to obtain a K-approximation to the optimal solution for any K>1. Our proof is extended to another open question regarding the computational complexity of a restricted version of the Min-Sum problem in an undirected network with ordered dual cost links (called the MSOD problem). To solve the Min-Min problem efficiently, we introduce a novel concept called conflicting link set which provides insights into the so-called trap problem, and develop a divide-and-conquer strategy. The result is an effective heuristic for the Min-Min problem called COnflicting Link Exclusion (COLE), which can outperform other approaches in terms of both the optimality and running time. We also apply COLE to the MSOD problem to efficiently provide shared path protection and conduct comprehensive performance evaluation as well as comparison of various schemes for shared path protection. We show that COLE not only processes connection requests much faster than existing integer linear programming (ILP)-based approaches but also achieves a good balance among the active path length, bandwidth efficiency, and recovery time.  相似文献   

11.
链路故障的恢复,不仅仅是选择一条连通的备份路径问题,还应考虑网络业务故障恢复过程中的QoS需求。针对此问题,该文基于多备份路径策略,构建概率关联故障模型和重路由流量丢弃量优化目标。并基于该优化目标,以业务的QoS需求为约束,建立故障恢复问题的数学模型,提出一种QoS约束的链路故障多备份路径恢复算法。该算法构建单条备份路径时,以最大程度地减少重路由流量丢弃为目标,并采用改进的QoS约束的k最短路径法进行拼接,且给与高优先级链路更多的保护资源。此外还证明了算法的正确性并分析了时间空间复杂度。在NS2环境下的仿真结果表明,该算法显著提升了链路故障恢复率和重路由流量QoS满足率,且QoS约束条件越强,相较于其它算法优势越明显。  相似文献   

12.
We consider the problem of recovery from any double-link failure by exploiting shared path protection in wavelength-division multiplexing (WDM) mesh networks. We for the first time discover the phenomenon of sharing contradiction, which results in the violation of 100% recovery guarantee. To completely eliminate the sharing contradiction, we introduce the so-called preference policy, which implies that one of two backup paths (BPs) for each connection is given priority over the other to recover the failed active path (AP). Based on this policy, we propose a backup-multiplexing scheme with 100% recovery guarantee. Further, we transform the problem of minimizing the total number of wavelength-links under the wavelength continuity constraint while recovering from any dual-link failure to integer linear programming (ILP) formulations. Additionally, we investigate three preference policies, i.e., the first backup path preference policy (FBPPP), the second backup path preference policy (SBPPP), and the optimal preference policy (OPP). The numerical results show that our proposed backup multiplexing scheme can reduce about 30% wavelength-link consumption, compared to dedicated protection. Also, the results show that the policy, which specifies that the shorter one of two backup paths is preferred, generally outperforms the policy, which specifies that the longer one of two backup paths is preferred. Furthermore, the results show that OPP has a better performance when two BPs for each connection are more comparable in their lengths.  相似文献   

13.
The design of survivable mesh based communication networks has received considerable attention in recent years. One task is to route backup paths and allocate spare capacity in the network to guarantee seamless communications services survivable to a set of failure scenarios. This is a complex multi-constraint optimization problem, called the spare capacity allocation (SCA) problem. This paper unravels the SCA problem structure using a matrix-based model, and develops a fast and efficient approximation algorithm, termed successive survivable routing (SSR). First, per-flow spare capacity sharing is captured by a spare provision matrix (SPM) method. The SPM matrix has a dimension the number of failure scenarios by the number of links. It is used by each demand to route the backup path and share spare capacity with other backup paths. Next, based on a special link metric calculated from SPM, SSR iteratively routes/updates backup paths in order to minimize the cost of total spare capacity. A backup path can be further updated as long as it is not carrying any traffic. Furthermore, the SPM method and SSR algorithm are generalized from protecting all single link failures to any arbitrary link failures such as those generated by Shared Risk Link Groups or all single node failures. Numerical results comparing several SCA algorithms show that SSR has the best trade-off between solution optimality and computation speed.  相似文献   

14.
针对现有可生存虚拟网络链路保护方法无差别对待所有虚拟链路、备份资源消耗多且故障后网络恢复时延长的问题,该文提出一种核心链路感知的可生存虚拟网络链路保护(CLA-SVNLP)方法。首先,综合考虑虚拟链路动态和静态两方面因素构建虚拟链路核心度度量模型,依据虚拟网络生存性需求,对核心度较高的虚拟链路进行备份保护;其次,将p圈引入可生存虚拟网络链路保护,依据虚拟网络特点构建p圈,为核心虚拟链路提供1:N保护,即每条核心虚拟链路平均消耗1/N条的备份链路带宽资源以减少备份链路资源消耗,并将单物理链路保护问题转化为多个p圈内的单虚拟链路保护问题;最后网络编码技术与p圈结合,将备份链路对核心虚拟链路提供的1:N保护转化为1+N保护,避免了故障后定位、检测及数据重传。仿真结果表明,该方法提高了备份资源利用率且缩短了故障后的网络恢复时延。  相似文献   

15.
Shared partial path protection in WDM networks with shared risk link groups   总被引:1,自引:0,他引:1  
For 100% shared risk link group (SRLG) failure protection, conventional full path protection has to satisfy SRLG-disjoint constraints, i.e., its working path and backup path cannot go though the same SRLG. With the increase of size and number of SRLGs, capacity efficiency of conventional shared full path protection becomes poorer due to SRLG-disjoint constraints and the blocking probability becomes much higher due to severe traps. To solve these problems, we present a partial path protection scheme where SRLG-disjoint backup paths may only cover part of the working path. Full path protection becomes a special case of partial path protection, in which the backup path covers the full working path. By choosing the most survivable partial backup path as backup path, we can make the impact of SRLG failures as low as possible and accept as many as possible connection requests. Assuming every SRLG has the same probability to fail, we present a heuristic algorithm to find the most survivable partial backup path by choosing full path protection first, iteratively computing partial backup paths and choosing the most survivable one. The benefit of this heuristic algorithm is that it can find the optimal results within less iteration. Analytical and simulation results show that, compared to conventional full path protection, our proposed scheme can significantly reduce blocking probability with little sacrifice on survivability. The proposed scheme is very useful particularly when the network contains a lot of SRLGs and the blocking probability of conventional full path protection becomes too high.
Jianqing LiEmail:
  相似文献   

16.
As networks grow in size and complexity, both the probability and the impact of failures increase. The pre-allocated backup bandwidth cannot provide 100% protection guarantee when multiple failures occur in a network. In this article, we focus on how to recover the protecting capabilities of FIPP (Failure-independent path-protecting) p-cycles against the subsequent links failure on WDM networks, after recovering the working paths affected by the failure of link. Two recovering policies are designed to recover the protecting capabilities of the FIPP p-cycles if possible, unless there is no sufficient network resource. They are Cycle Recovery Policy and Path Recovery Policy. In addition, a Cycle Adjust algorithm is proposed and used to recover the affected cycles. The simulation results of the proposed methods are also given.  相似文献   

17.
This paper investigates the problem of dynamic survivable lightpath provisioning against single-node/link failures in optical mesh networks employing wavelength-division multiplexing (WDM).We unify various forms of segment protection into generalized segment protection (GSP). In GSP, the working path of a lightpath is divided into multiple overlapping working segments, each of which is protected by a node-/link-disjoint backup segment. We design an efficient heuristic which, upon the arrival of a lightpath request, dynamically divides a judiciously selected working path into multiple overlapping working segments and computes a backup segment for each working segment while accommodating backup sharing. Compared to the widely considered shared-path protection scheme, GSP achieves much lower blocking probability and shorter protection-switching time for a small sacrifice in control and management overhead.On the basis of generalized segment protection, we present a new approach to provisioning lightpath requests according to their differentiated quality-of-protection (QoP) requirements. We focus on one of the most important QoP parameters—namely, protection-switching time—since lightpath requests may have differentiated protection-switching-time requirements. For example, lightpaths carrying voice traffic may require 50 ms protection-switching time while lightpaths carrying data traffic may have a wide range of protection-switching-time requirements. Numerical results show that our approach achieves significant performance gain which leads to a remarkable reduction in blocking probability.While our focus is on the optical WDM network, the basic ideas of our approaches can be applied to multi-protocol label switching (MPLS) networks with appropriate adjustments, e.g., differentiated bandwidth granularities.  相似文献   

18.
With the increase of size and number of shared risk link groups (SRLGs) in WDM networks, path protection tends to have longer working paths and backup paths due to SRLG-disjoint constraints, which makes physical impairment a major concern in working path and backup path provisioning, particularly in large-sized all optical networks. As a simple and efficient algorithm, the working path first algorithm is often used for path protection against SRLG failures, where the working path is calculated first by using the shortest-path algorithm on the graph, followed by using the SRLG-disjoint shortest path as backup path. Compared with the working path, the backup path calculated after the working path in the working path first algorithm is more vulnerable to physical impairment, since it may be much longer than the working path. As a result, if we reject those connections that cannot meet the physical impairment requirement, with SRLGs the blocking probability of path protection will be much higher. We argue that impairment must be taken into account together with capacity efficiency in a comprehensive way during SRLG-disjoint working path and backup path selection. To solve this problem, we motivate the needs to study physical impairment-aware shared-path protection by considering two policies. Policy I uses two SRLG-disjoint least impairment paths as working path and backup path, respectively, and Policy II tries to benefit from both the shortest path and the least impairment path by choosing them intelligently. Analytical and simulation results show: (1) compared with impairment-unawareness, impairment-aware SRLG failure protection performs much better in terms of blocking probability especially with strong physical impairment constraints; (2) impairment-aware SRLG failure protection can significantly reduce physical-layer blocking probability; and (3) the algorithm based on Policy II achieves a good balance between capacity efficiency and physical impairment requirement.  相似文献   

19.
This paper develops a connection establishment framework for protecting connections against single-link failures using link protection at the granularity of a connection, referred to as Connection Switched Link Protection (CSLP). As a connection is routed only around a failed link, the channel assignment for the connection on the backup path of the failed link must be consistent with that of the primary path. Such a consistency is guaranteed at the time of call admission. The advantages of employing link protection at the connection level is established by comparing its performance through extensive simulations against link protection at the granularity of a fiber, referred to as Fiber Switched Link Protection (FSLP). Link protection at the connection level is shown to significantly outperform that at the granularity of a fiber, specifically when some traffic requires protection while others do not.  相似文献   

20.
As the size and the complexity of optical mesh networks are continuing to grow and the severe natural disasters are occurring more frequently in recent years, multiple failures (link failures or node failures) become increasing probable. Protection strategies against these failures generally provision backup paths for working paths based on link-disjointness or node-disjointness. Compared with link-disjoint protection, node-disjoint protection means higher degree of risk isolation and can accommodate both link failures and node failures. This motivates us to propose a hybrid node-disjoint protection, named Segment and Path Shared Protection (SPSP), to provide 100% protection against arbitrary simultaneous double-node failures (the worst double-failure case). For each service connection request, SPSP first provisions backup segments for the working segments, respectively, as the primary backup resources, then provisions a single backup path for the whole working path as the second backup resource. In addition to its complete protection capability and flexible scalability for double failures, SPSP can also obtain better network load balance and resource sharing degree by dynamic link-cost adjustment and reserved backup resource sharing. Simulation results show that SPSP can achieve a shorter average recovery time than path shared protection (PSP) and higher resource utilization and lower blocking probability than segment shared protection (SSP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号