首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
利用2011~2013年期间60 h的钠荧光多普勒激光雷达温度和风场数据,采用矢端曲线法提取廊坊上空85~95 km中层顶区域准单色惯性重力波的所有参量,并统计准单色大气重力波的活动特性。获得的85次准单色重力波事件中,上传(下传)重力波64次(21次),占总数的75。29%(24。71%)。垂直波长(水平波长)和观测周期平均值分别为6。6 km(727。8 km)和7。4 h,分别集中在6~9 km(200~800 km)和2~7 h,固有周期平均值为7。76 h,主要集中在3~9 h,水平传播方向分布比较均匀,没有占主导的传播方向。对于上传重力波,水平背景风在大气重力波水平传播方向上的分量取正值和取负值的概率大致相等,但对于下传重力波,该风场分量取正值的概率大约是取负值的2倍,说明观测到的下传大气重力波在中层顶区域多为顺风传播。  相似文献   

2.
根据米氏散射理论,对卷云消光特性、有效激光雷达比与波长之间的关系进行了模拟研究,并基于三波长激光雷达系统于2011年1月至2012年10月在合肥西郊的观测资料,计算了卷云不同波长的有效激光雷达比。理论和实验结果均表明,对三波长激光雷达系统所用的355,532,1064nm三个波长而言,卷云的消光系数与波长无关,有效激光雷达比随着波长的增大而增大。合肥地区的卷云有效激光雷达比主要分布在10~70sr之间,它们对应三个波长上的均值分别为(21.0±9.3)sr,(29.4±11.7)sr,(38.1±11.4)sr。355nm波长的卷云有效激光雷达比秋季最低,而532nm和1064nm波长则秋季最高。  相似文献   

3.
基于国家子午工程项目钠激光雷达的长期观测数据,统计分析了北京和海南两地出现的钠层密度翻转现象,发现这种现象往往出现在钠层的下部,宽度在2~7 km范围,持续时间约为2~8 h。观测结果显示,钠层密度翻转结构的出现常伴随着大尺度重力波的传播活动,且钠层密度翻转结构的消失过程也和较大尺度重力波的破碎过程有较好的对应关系.这表明,除风剪切和自身动力学不稳定因素外,大尺度和小尺度重力波相互作用引起的垂直对流不稳定效应可能是大尺度重力波破碎的另一个重要原因.  相似文献   

4.
介绍了中国海洋大学激光雷达团队的小型化机载多普勒激光雷达系统研制工作、机载运动状态下的姿态及速度校正算法和海上风场反演方法。分析了2016年在广东省海陵岛近岸海域开展的国内首次无人直升机载激光雷达海上风场观测实验的数据,并与陆基多普勒激光雷达观测结果进行了比对,验证了系统的工作性能及数据反演算法的有效性。实验结果表明,机载多普勒激光雷达系统运动状态下的观测数据与陆基激光雷达观测数据相关性较好,系统可搭载于小型无人机平台,有效实现海上风场的快速精确观测。  相似文献   

5.
2009年6月20日~7月20日,中国海洋大学利用研制的可移式多普勒激光雷达系统在珠海市国家气候观象台(N22º 4’54”,E113º 12’50”)进行了为期一月的大气观测实验。报道了可移式多普勒激光雷达系统及观测实验,介绍了大气边界层高度检测原理及应用。利用一阶导数方法,对该系统实测数据进行了大气边界层高度检测和分析,讨论了有云存在时如何同时检测云高和大气边界层高度问题。实验结果表明,该区域和时间周期内的大气边界层高度范围在0.3~1.2km之间,平均高度为0.66km。  相似文献   

6.
阐述了星载对地测风激光雷达系统对于全球大气气象研究的意义,总结了国际星载测风雷达系统的研究思路。介绍了中国海洋大学在国际上地基、机载、星载这一激光雷达研究思路下,基于碘分子吸收滤波器设计的车载、机载激光雷达系统和相关系统的验证实验,在地基测风系统的基础上建立了532 nm波段基于碘分子吸收滤波器或法布里-珀罗滤波器的Labview星载模拟软件。使用车载系统的实际测量数据对使用碘分子吸收滤波器的模拟测风激光雷达软件在0~3 km和3~20 km的测风精度进行模拟验证,结果表明回波累积脉冲次数在1300次的时候,可以达到星载测风雷达的测量要求。  相似文献   

7.
基于子午工程项目北京钠激光雷达的长期观测数据(2010年4月到2011年9月), 采用Yang等人(2008)的重力波参数提取方法,提取了在253个夜晚2 208 h的有效观测时间里出现的162个钠层单色重力波的垂直波长、周期、幅度值和幅度增长因子参数值.统计分析显示激光雷达所观测到的中层顶区域重力波具有系统性的参数关系,z=0.226Tob0.530、KE=6.6610-10 kz-3.091和KE=8.9710-6 fob-1.696.这些实验观测结果验证了Gardner(1994)扩散滤波理论的结果,但同时发现仅认为波致涡流扩散是重力波衰减的主要途径是不完全正确的,其它因素引起的衰减在重力波的饱和和耗散机制中也起到了重要作用.  相似文献   

8.
利用ZEMAX软件对透射式米散射激光雷达系统的杂散光进行分析,对激光雷达系统中光学镜片表面的反射和镜筒内壁系统的多次反射、散射进行模拟,得到镜面的多次反射光成像在探测器面源的功率可达3×10-8 W,镜筒散射光成像在探测器面源的功率达到2.8×10-9 W。在测量条件相同的情况下,通过对透射式和反射式激光雷达的连续观测结果进行分析,得出透射式米散射激光雷达的近场杂散光经过光电转换后的回波信号强度可以达到1000mV,比反射式激光雷达系统的高约17倍;用衰减片分别对两种雷达信号进行衰减处理,结果显示:当信号衰减80%时,透射式激光雷达系统的近场信号出现下翘现象。从对信号非线性化处理的结果也可以看出,反射式激光雷达系统优于透射式激光雷达系统。  相似文献   

9.
研制了基于双F-P标准具直接探测的地基测风激光雷达.简要回顾了双边缘直接探测技术,介绍了系统结构与控制.为验证系统测量结果的准确性,研制了多普勒校准仪.在+40 m/s动态范围内的校准实验表明:当累计光子数达到2 000时,测风激光雷达系统对靶盘径向转速测量的标准误差为0.6 m/s.风场观测初步对比实验时,测风激光雷达的测量结果与风廓线测量结果一致.给出了24 h连续大气风场观测的结果:风场观测的垂直分辨率为21.2m,每个径向观测的累积时间1 min,当激光雷达扫描视场内有云层时,测风激光雷达的探测高度可达10 km.  相似文献   

10.
后向散射激光雷达技术已广泛应用于大气气溶胶的探测,但由于有盲区和过渡区,限制了它在近距离段的探测范围和精度。侧向散射激光雷达技术没有后向散射激光雷达技术中的上述缺陷,可实现近距离段气溶胶信号的连续探测,且探测精度较高。开发研制了基于CCD的侧向散射激光雷达系统,它由激光发射、光学接收、几何定标及数据采集等子系统组成。与后向散射激光雷达的对比探测个例表明,该激光雷达系统数据可靠,近距离的有效探测范围为0.02~4 km。这一系统的建立为进一步深入研究近地面层的气溶胶时、空分布奠定了坚实的基础。  相似文献   

11.
临近空间风场的探测,在大气动力学研究和提高数值天气预报的准确性,以及航空航天保障等方面具有重要意义。研制基于瑞利散射双边缘技术的60 km多普勒激光雷达用于临近空间大气风场的测量。激光雷达主要分为垂直指向测量系统和两台斜指向测量系统。工作波长355 nm,探测距离15~60 km。为验证系统的可靠性和积累风场观测数据,于2014年下半年进行了外场实验,并与当地的探空气球数据进行对比,结果显示60 km瑞利多普勒激光雷达风场测量数据与探孔气球数据具有良好的一致性。  相似文献   

12.
一台用于观测对流层和平流层风场的车载瑞利测风激光雷达于安徽合肥建成,该雷达使用双边缘技术,设计探测高度10~40 km,距离分辨率分别为100 m(20 km高度以下)和500 m(20 km高度以上)。在2011年夏季该雷达于新疆乌鲁木齐地区(42.1N,87.1E)进行了风场观测实验并成功观测到了平流层准零风层大气结构,给出了几组夜间典型的风场数据,根据观测结果得出:准零风层底部高度稳定在17~18 km高度而不随时间变化,而准零风层厚度则随时间有一个先增大后减小的趋势,并在北京时间凌晨0点~3点期间达到最大值。在观测中出现的准零风层厚度最大值超过15 km,最小值则仅有约2~3 km。分析认为:准零风层厚度的变化与夜间平流层接收到的紫外线辐射强度变化有关,同一时刻不同纬度上的平流层接收的紫外线辐射强度变化程度不同,导致平流层温度梯度继而大气环流的速度发生变化,从而引起准零风层厚度变化。  相似文献   

13.
闫召爱  胡雄  郭文杰  郭商勇  程永强  张炳炎  陈志芳  赵尉博 《红外与激光工程》2021,50(3):20210100-1-20210100-10
研制了车载钠荧光散射多普勒激光雷达和车载532 nm瑞利散射多普勒激光雷达用于测量临近空间大气温度和风场。在钠荧光散射多普勒激光雷达中使用了三频比率多普勒测量方法获得80~100 km的温度和风场。在532 nm瑞利散射多普勒激光雷达中,使用碘分子吸收线边缘技术测量70 km 以下的风场,使用积分方法测量80 km以下的温度。在距离分辨率为1 km、时间分辨率为1 h情况下,40 km处的大气温度、风速测量不确定度约为0.2 K和0.4 m/s;70 km处约为1.5 K和5.5 m/s;92 km处约为0.3 K和1.0 m/s。这两部激光雷达已经在北京、青海、甘肃等地进行了长期观测,应用于临近空间环境特性研究。  相似文献   

14.
目前我国尚缺乏25~60 km大气风场实时探测手段,为此研制了60 km车载瑞利测风激光雷达。介绍了系统总体结构,对分系统的研制做了详细描述。为提高风场反演的精度,设计了标准具通过率函数校准系统。提出了标准具通过率函数校准方法,并开展实验对标准具通过率函数进行了校准。校准结果表明,接收机性能稳定,各参数测量标准差均小于0.06。该系统在德令哈地区对15~60 km大气风场进行了观测,获得了水平风场的测量结果,并与当地探空气球的探测结果进行了比对,30 km以下一致性较好。对风速、风向测量误差进行了计算,40 km以下,风速测量误差4 m/s,风向测量误差6,40 km以上,风速测量误差8 m/s,风向测量误差18。该系统设计合理,性能稳定,能够实时探测10~60 km大气风场。  相似文献   

15.
高低空一体化测风激光雷达   总被引:2,自引:2,他引:0       下载免费PDF全文
高时空分辨率的大气风场探测对提高数值天气预报的准确性、大气动力学过程的研究、气候研究等具有很重要的意义。介绍了基于双Fabry-Perot标准具的直接接收激光多普勒测量原理。提出了40 km的高低空大气风场同时观测的技术方法。给出了利用大气气溶胶和分子散射信号的Mie-Rayleigh多普勒测风激光雷达的系统结构,并分析了工作波长、望远镜口径、扫描天顶角和标准具参数等激光雷达系统参数。研究了扫描角度误差、气溶胶后向散射信号、大气温度对风场探测精度的影响。分析了雷达系统的总体性能,得出在40 km高度处,当距离分辨率为500 m、时间分辨率为30 min时,水平风速探测精度优于6 m/s,可以满足有关应用的要求。  相似文献   

16.
为了获得更为准确的大气风速廓线,使用国内首台基于三通道Fabry-Perot标准具的瑞利散射测风激光雷达进行风场测量,提出了根据实测数据及时调整标准具位置的激光频率反演方法。此方法有效减小了激光频率漂移和抖动造成的反演误差,同时对传统风速算法进行了改进。利用非线性迭代算法处理数据,通过对两种算法处理结果的比较,发现迭代算法具有更高的反演精度。使用非线性迭代算法对三通道瑞利散射多普勒测风激光雷达风场测量数据进行处理,得到了10km~40km的大气风速廓线。结果表明,此种风速反演算法切实可行,并提高了反演精度。  相似文献   

17.
邓潘  张天舒  陈卫  刘洋 《红外与激光工程》2017,46(7):730003-0730003(6)
为研究中层大气分布情况,采用自行研制的532 nm瑞利(Rayleigh)散射激光雷达,对合肥地区(31.90 N,117.170 E)25~40 km高度范围内的大气密度和温度廓线分布进行观测。将瑞利散射激光雷达所测结果与NRLMSISE-00大气模型数据进行对比,以验证瑞利散射激光雷达性能及数据处理方法的可靠性。通过数据对比得出,在25~40 km高度范围内,瑞利散射激光雷达获得的大气密度值与NRLMSISE-00大气模型密度值的比值为0.99~1.03;瑞利散射激光雷达所测温度值与NRLMSISE-00大气模型数据的温度偏差均值约为2.8 K,其中38 km以下两者温度偏差约为1.6 K。数据对比说明,瑞利散射激光雷达观测值与NRLMSISE-00大气模型数据具有较一致的密度分布特征和温度分布特征,瑞利散射激光雷达的观测结果能够较真实地反映合肥上空25~40 km高度范围内的大气密度和温度分布。  相似文献   

18.
为了精确观测平流层风场,采用F-P标准具作为瑞利散射测风激光雷达多普勒频率检测的核心器件,对F-P标准具多普勒频率检测原理进行了理论分析,从分析最大设计高度时的测量误差着手,优化选取标准具透过率曲线参量;介绍了透过率曲线参量的校准过程和校准方法,分析了导致透过率曲线的半峰全宽增大的原因、透过率曲线校准精度对速度灵敏度及系统探测误差的影响;并通过实验对设计和校准结果进行了验证。结果表明,由于透过率曲线的半峰全宽增大,导致速度灵敏度下降了0.118%/(m·s-1);40km高度处,在测量信噪比大于10的条件下,径向速度测量精度增大2m/s。  相似文献   

19.
基于Fizeau干涉仪的激光风速测量技术   总被引:7,自引:1,他引:7  
孙东松  杨昭  方建兴 《中国激光》2003,30(10):943-946
设计和讨论了一种利用Fizeau干涉仪进行激光风速测量的原理。该系统采用Fizeau干涉仪进行信号频谱分析 ,形成的梳状干涉图案强度分布可以通过线列CCD探测器测定 ,其重心位置决定信号的多普勒频移量或径向风速。利用Monte Carlo方法模拟计算了该系统的测量精度 ,结果表明 ,在 90 %的光子数探测几率下 ,多普勒测量精度约是单个CCD探测通道谱宽的 10 % ;激光雷达系统风速测量的精度在垂直高度 2km内优于 2m/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号