首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对全双工无线接入与回传一体化小基站场景下长期的频谱效率和能效同时最大化问题,该文提出一种基于近似动态规划理论的接入与回传一体化小基站接入控制与资源分配联合优化算法。该算法首先联合考虑当前基站的资源使用和功率配置情况,在任一用户需求动态到达以及平均时延、小基站回传速率和传输功率约束下,使用受限马尔科夫决策过程(CMDP)建立频谱效率最大化和功率消耗最小化的多目标优化模型,其次运用切比雪夫理论将多目标优化问题转化为单目标问题,并使用拉格朗日对偶分解法进一步转化为非受限的马尔科夫决策过程(MDP)问题。最后,为了解决其求解时存在的“维度灾”爆炸问题,该文提出基于近似动态规划的无线接入与回传一体化小基站资源动态分配算法进行求解,得到此时的接入与资源分配策略。仿真结果表明,所提算法能在保证平均时延约束、小基站回传速率约束和传输功率约束的同时最大化长期平均频谱效率和能效。  相似文献   

2.
For the cognitive OFDMA uplink communication system,a robust power and subcarrier allocation algorithm based on maximum interference efficiency was proposed.Firstly,considering primary user interference constraint,secondary user transmit power constraint,subcarrier allocation constraint and secondary user minimum rate constraint,a robust resource optimization model based on outage probability was established.Then,by using Bernstein approximation and Dinkelbach’s method,the original non-convex problem based on outage probability was transformed into an equivalent convex optimization one,and the analytical solution was obtained by Lagrangian dual function method.Meanwhile,the computational complexity and robust sensitivity of the algorithm were analyzed.The simulation results show that the proposed algorithm has better interference efficiency and robustness.  相似文献   

3.
针对接入与回传一体化小基站场景下用户个性化视频流业务需求问题,该文提出一种基于接入与回传一体化小基站的用户满意度最大化算法。该算法首先根据系统实际可达速率和用户满意度需求速率间的不匹配程度,动态调整下一周期队列传输所需频谱资源,并建立用户质量满意度最大化模型,其次运用Lyapunov优化方法把初始问题转化为Lyapunov偏移加罚项的优化,将溢出概率约束转化为关于自变量的不等式,最后基于拉格朗日对偶分解的用户接入带宽分配算法和基于内点法的回传和接入带宽分配算法进行求解。仿真结果表明,该算法提高了系统用户质量满意度,同时保证了系统稳定性。  相似文献   

4.
In order to improve the suppression capability of parametric perturbation and energy efficiency (EE) of heterogeneous networks (HetNets),a robust resource allocation algorithm was proposed to maximize system EE for reducing cross-tier interference power in non-orthogonal multiple access (NOMA) based HetNets.Firstly,the resource optimization problem was formulated as a mixed integer and nonlinear programming one under the constraints of the interference power of macrocell users,maximum transmit power of small cell base station (BS),resource block assignment and the quality of service (QoS) requirement of each small cell user.Then,based on ellipsoid bounded channel uncertainty models,the original problem was converted into the equivalent convex optimization problem by using the convex relaxation method,Dinkelbach method and the successive convex approximation (SCA) method.The analytical solutions were obtained by using the Lagrangian dual approach.Simulation results verifiy that the proposed algorithm had better EE and robustness by comparing it with the existing algorithm under perfect channel state information.  相似文献   

5.
针对能效提升、宏用户干扰减小的问题,该文研究了基于干扰效率最大的异构无线网络顽健资源分配算法.首先,考虑宏用户干扰约束、微蜂窝用户速率需求约束和最大发射功率约束,将资源优化问题建模为多变量非线性规划问题.其次,考虑有界信道不确定性模型,利用Dinkelbach辅助变量方法和连续凸近似方法结合对数变换方法,将原分式规划顽健资源分配问题转换为等价的确定性凸优化问题,并利用拉格朗日对偶算法获得解析解.理论分析了计算复杂度和参数不确定性对性能的影响.仿真结果表明该算法具有较好的干扰效率和鲁棒性.  相似文献   

6.
This paper studies energy‐efficiency (EE) power allocation for cognitive radio MIMO‐OFDM systems. Our aim is to minimize energy efficiency, measured by “Joule per bit” metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non‐convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy‐ efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.  相似文献   

7.
In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique to improve the efficiency of radio spectrum. Unlike existing works in literatures where only one secondary user (SU) uses both overlay and underlay mode, the different transmission modes should dynamically be allocated to different SUs according to their different quality of services (QoS) to achieve the maximal efficiency of radio spectrum. However, dynamic sharing mode allocation for heterogeneous services is still a great challenge in CNRs. In this paper, we propose a new resource allocation method based on dynamic allocation hybrid sharing transmission mode of overlay and underlay (Dy-HySOU) to obtain extra spectrum resource for SUs without interfering with the primary users. We formulate the Dy-HySOU resource allocation problem as a mixed-integer programming to optimize the total system throughput with simultaneous heterogeneous QoS guarantee. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with simultaneous fairness guarantee, and the achieved Dy-HySOU diversity gain is satisfying.  相似文献   

8.
Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency‐division multiple access–based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a “bit per Joule” metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy‐efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.  相似文献   

9.
针对多天线广播下行链路通信系统,研究了一种鲁棒能效联合波束成形和功率分配算法。首先,鲁棒能效优化问题描述为满足一定功率约束的系统和速率与系统消耗之比的最大化优化问题。其次,利用分数规划理论及用户速率与最小均方误差之间的关系,把所描述的分数规划优化问题转化成参数化多项式优化问题。然后,利用拉格朗日对偶及单调优化理论,提出了一种有效的鲁棒能效优化算法。数值仿真结果表明,相对于传统的非鲁棒能效优化算法,所提鲁棒能效优化算法可获得明显的能效性能增益。   相似文献   

10.
In this paper, an optimal user power allocation scheme is proposed to maximize the energy efficiency for downlink non-orthogonal multiple access (NOMA) heterogeneous networks (HetNets). Considering channel estimation errors and inter-user interference under imperfect channel state information (CSI), the energy efficiency optimization problem is formulated, which is non-deterministic polynomial (NP)-hard and non-convex. To cope with this intractable problem, the optimization problem is converted into a convex problem and address it by the Lagrangian dual method. However, it is difficult to obtain closed-form solutions since the variables are coupled with each other. Therefore, a Lagrangian and sub-gradient based algorithm is proposed. In the inner layer loop, optimal powers are derived by the sub-gradient method. In the outer layer loop, optimal Lagrangian dual variables are obtained. Simulation results show that the proposed algorithm can significantly improve energy efficiency compared with traditional power allocation algorithms.  相似文献   

11.
The cellular heterogeneous network(HetNet) with ultra dense small cells is called ultra cellular HetNet.The energy efficiency for this network is very important for future green wireless communications.The data rates and power consumptions for three parts(i.e.,macro cells,small cells,and mixed backhaul links) in ultra cellular HetNet are jointly formulated to model downlink energy efficiency considering the active base stations(BSs) and inactive BSs.Then,in order to decrease the downlink co-channel interference,the interference price functions are also jointly set up for the three parts in ultra cellular HetNet.Next,energy efficiency optimization iterative algorithm scheme using the fractional programming and Lagrangian multiplier with constraints for density of ultra dense small cells and fraction of mixed backhaul links is presented with interference pricing.The convergence and computation complexity are also proved in this scheme.The numerical simulations finally demonstrate convergence behavior of the proposed algorithm.By comparison,some conclusion can be drawn.Maximizing energy efficiency of system is lower as the density of small cell is high.The effect on maximizing energy efficiency with interference price outperforms that without interference price.And the energy efficiency increases as the fraction of mixed backhaul links is higher because of more power consumption in the microwave backhaul links.  相似文献   

12.
由于5G技术的快速发展,基于能量采集的认知物联网(Internet of things,IOT)具有很大的应用前景。针对无线物联网网络中存在的"doubly-near-far"问题,考虑在认知物联网网络中将能量采集与信息接收站分开管理,提出了一个基于能量采集的异构认知物联网网络模型,实现用户能效的最大化。此外,该模型不仅考虑能量采集,还考虑了频谱利用率低、频谱资源稀缺的问题,针对该网络优化问题,提出了一个混合整数非线性规划问题,通过信道分配、功率控制以及时间分配的联合优化的方法,考虑用户数据速率、干扰约束的同时,最大化能效。仿真实验结果证明了所提出模型以及算法的有效性。  相似文献   

13.
A low complexity asymptotic regularized zero forcing cooperative beamforming algorithm based on energy efficiency in heterogeneous massive MIMO system was proposed,aiming at the problem that the current multi-flow regularization zero forcing beamforming algorithm sets the power constraint of each antenna in the regularization term as a fixed value and ignores the influences of factors such as the number of antennas,the number of users and QoS.The algorithm selects the optimal antenna power constraint set through the optimization method,and the optimal beamforming was asymptotically ob-tained to balance the interference among users to achieve the optimal energy efficiency,considering the impact of the number of antennas and users with the constraints of the antenna power and QoS.In view of the importance of backhaul in massive MIMO system,a backhaul power consumption model and the impact of backhaul power consumption on system performance was analyzed.Analysis and simulation results show that the proposed algorithm has great improvement of the performance,especially when the number of antennas is large.The algorithm is close to optimal performance,especially suitable for massive MIMO system of next generation communication.  相似文献   

14.
This article considers energy‐efficient power control schemes for interference management in uplink spectrum‐sharing heterogeneous networks that maximize the energy efficiency of users, protect the macro base station, and support users with QoS consideration. In the first scenario, we define the objective function as the weighted sum of the energy efficiencies and develop an efficient global optimization algorithm with global linear and local quadratic rate of convergence to solve the considered problem. To ensure fairness among individual user equipments (UEs) in terms of energy efficiency, we consider the max‐min problem, where the objective is defined as the weighted minimum of the energy efficiencies, and a fractional programming theory and the dual decomposition method are jointly used to solve the problem and investigate an iterative algorithm. As by‐products, we further discuss the global energy efficiency problem and consider near‐optimal schemes. Numerical examples are provided to demonstrate significant improvements of the proposed algorithms over existing interference management schemes.  相似文献   

15.
In Non-Orthogonal Multiple Access (NOMA), the best way to fully exploit the benefits of the system is the efficient resource allocation. For the NOMA power domain, the allocation of power and spectrum require solving the mixed-integer nonlinear programming NP-hard problem. In this paper, we investigate user scheduling and power allocation in Multi-Cell Multi-Carrier NOMA (MCMC-NOMA) networks. To achieve that, we consider Weighted Sum Rate Maximization (WSRM) and Weighted Sum Energy Efficiency Maximization (WSEEM) problems. First, we tackle the problem of user scheduling for fixed power using Fractional Programming (FP), the Lagrange dual method, and the decomposition method. Then, we consider Successive Pseudo-Convex Approximation (SPCA) to deal with the WSRM problem. Finally, for the WSEEM problem, SPCA is utilized to convert the problem into separable scalar problems, which can be parallelly solved. Thus, the Dinkelbach algorithm and constraints relaxation are used to characterize the closed-form solution for power allocation. Extensive simulations have been implemented to show the efficiency of the proposed framework and its superiority over other existing schemes.  相似文献   

16.
针对异构云无线接入网络的频谱效率和能效问题,该文提出一种基于功率域-非正交多址接入(PD-NOMA)的能效优化算法。首先,该算法以队列稳定和前传链路容量为约束,联合优化用户关联、功率分配和资源块分配,并建立网络能效和用户公平的联合优化模型;其次,由于系统的状态空间和动作空间都是高维且具有连续性,研究问题为连续域的NP-hard问题,进而引入置信域策略优化(TRPO)算法,高效地解决连续域问题;最后,针对TRPO算法的标准解法产生的计算量较为庞大,采用近端策略优化(PPO)算法进行优化求解,PPO算法既保证了TRPO算法的可靠性,又有效地降低TRPO的计算复杂度。仿真结果表明,该文所提算法在保证用户公平性约束下,进一步提高了网络能效性能。  相似文献   

17.
For wireless powered mobile edge computing (MEC) network,a system computation energy efficiency (CEE) maximization scheme by considering the limited computation capacity at the MEC server side was proposed.Specifically,a CEE maximization optimization problem was formulated by jointly optimizing the computing frequencies and execution time of the MEC server and the edge user(EU),the transmit power and offloading time of each EU,the energy harvesting time and the transmit power of the power beacon.Since the formulated optimization problem was a non-convex fractional optimization problem and hard to solve,the formulated problem was firstly transformed into a non-convex subtraction problem by means of the generalized fractional programming theory and then transform the subtraction problem into an equivalent convex problem by introducing a series of auxiliary variables.On this basis,an iterative algorithm to obtain the optimal solutions was proposed.Simulation results verify the fast convergence of the proposed algorithm and show that the proposed resource allocation scheme can achieve a higher CEE by comparing with other schemes.  相似文献   

18.
In this paper, we consider user centric virtual cells model in distributed antenna systems (DAS). We investigate different power allocation optimization problems with interferences in DAS with and without user centric virtual cells model, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with user centric virtual cells model under the constraints of the minimum SE requirements of each user equipment (UE), maximum transmit power of each remote access unit (RAU). We firstly transform this non-convex objective function into a difference of convex functions (D.C.) problem, and then we obtain the optimal solutions by using the concave-convex procedure (CCCP) algorithm. The second objective problem is maximizing energy efficiency (EE) of the DAS with user centric virtual cells model under the same constraints as the first objective problem. Firstly, we exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we propose the corresponding optimal power allocation algorithm and also use similar method to obtain optimal solutions of the same optimization problems in DAS without using user centric virtual cells model. Simulation results are provided to demonstrate the effectiveness of the DAS with user centric virtual cells model, which can significantly improve the SE and the EE of the communication systems.  相似文献   

19.
陈瑾平  杨绿溪 《信号处理》2011,27(12):1824-1830
正交频分多址(OFDMA)技术以其更高的频谱效率和抗多径衰落特性成为高速无线通信网络的候选标准。兼顾效率和公平性是OFDMA系统资源分配亟待解决的问题。本文研究了OFDMA系统中的无线资源分配问题,既要保证QoS用户的最小速率要求,同时“尽力而为”用户之间必须满足最小速率最大化公平性(max-min fairness)准则;该资源分配问题可以表述为一个系统总功率约束下的子载波分配和功率控制的混合离散型优化模型,这是难解的NP-hard问题,穷举搜索的代价是极其巨大的。针对该非凸模型,本文设计一个拉格朗日松弛的优化算法,该算法中采用修正的椭球算法求解对偶问题。算法具有多项式时间复杂度,且与子载波数目呈线性增长关系。仿真结果表明,该算法能近似最优地满足用户QoS及最大最小公平性要求。   相似文献   

20.
针对车联网业务的低时延、低功耗需求及海量设备计算卸载引起的网络拥塞问题,该文提出一种在云雾混合网络架构下的联合计算卸载、计算资源和无线资源分配算法(JODRAA)。首先,该算法考虑将云计算与雾计算结合,以最大时延作为约束,建立最小化系统能耗和资源成本的资源优化模型。其次,将原问题转化为标准二次约束二次规划(QCQP)问题,并设计一种低复杂度的联合卸载决策和计算资源分配算法。进一步,针对海量设备计算卸载引起的网络拥塞问题,建立卸载用户接入请求队列的上溢概率估计模型,提出一种基于在线测量的雾节点时频资源配置算法。最后,借助分式规划理论和拉格朗日对偶分解方法得到迭代的带宽和功率分配策略。仿真结果表明,该文算法可以在满足时延需求的前提下,最小化系统能耗和资源成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号