首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对无线传感器网络节点能量有限、负载不均衡的问题,提出了一种基于粒子群优化模糊C均值的分簇路由算法POFCA。POFCA分别从成簇阶段和数据传输阶段进行了优化。成簇阶段,首先使用粒子群优化算法优化模糊C均值算法,克服了模糊C均值对初始聚类中心的敏感,并根据节点剩余能量和相对距离动态更新簇首,平衡簇内负载。数据传输阶段,基于距离因子、能量因子和节点负载设计了路径评价函数,并使用猫群优化算法为簇首搜寻最优路由路径,在平衡簇首负载的同时又不会加剧中继节点负载。仿真结果表明,与LEACH和LEACH-improved算法相比,POFCA能有效地平衡网络负载,降低网络能耗,延长网络生命周期。  相似文献   

2.
One of important issues in wireless sensor networks is how to effectively use the limited node energy to prolong the lifetime of the networks. Clustering is a promising approach in wireless sensor networks, which can increase the network lifetime and scalability. However, in existing clustering algorithms, too heavy burden of cluster heads may lead to rapid death of the sensor nodes. The location of function nodes and the number of the neighbor nodes are also not carefully considered during clustering. In this paper, a multi-factor and distributed clustering routing protocol MFDCRP based on communication nodes is proposed by combining cluster-based routing protocol and multi-hop transmission. Communication nodes are introduced to relay the multi-hop transmission and elect cluster heads in order to ease the overload of cluster heads. The protocol optimizes the election of cluster nodes by combining various factors such as the residual energy of nodes, the distance between cluster heads and the base station, and the number of the neighbor nodes. The local optimal path construction algorithm for multi-hop transmission is also improved. Simulation results show that MFDCRP can effectively save the energy of sensor nodes, balance the network energy distribution, and greatly prolong the network lifetime, compared with the existing protocols.  相似文献   

3.
李鑫滨  高梦玲  闫磊 《电信科学》2016,32(11):42-49
针对水下无线传感网络能量效率低、生命周期短的问题,提出了一种负载均衡且能量高效的水下分簇(load balanced and energy efficient underwater clustering,LBEEUC)协议。该算法在分簇过程中首先根据节点的经验负载来确定节点所在区域簇头的比例,使经验负载大的区域分布较多的簇头,分担数据转发的任务,均衡网络的能耗;其次在节点入簇时,在簇内设置中继节点,用于均衡远离簇头节点的传输能耗,并提前进行数据融合,减少数据冗余;最后在建立簇间路由时,利用Q 学习算法根据路径消耗的总能量最小的原则选择最优传输路径。仿真结果表明,本算法有效地均衡了网络的能耗,提高了能量利用效率,进而提高了网络的生存时间。  相似文献   

4.
孙彦清  彭舰  刘唐  陈晓海 《通信学报》2014,35(1):198-206
针对节点负载不均而形成的“热区”问题,提出了一种基于动态分区负载均衡的分布式成簇路由协议(UCDP)。其核心思想是:将网络合理化地动态分区,使距离基站较近的区面积较小,从而减少需要承担转发任务节点的区内通信开销,节省更多的能量供数据转发使用;综合考虑距离因子和剩余能量因子进行区内非均匀成簇;有机结合簇内单跳和区间转发,区头与簇头共同协作进行路由传输。实验表明,协议具有较好的稳定性,显著延长了网络的生存周期。  相似文献   

5.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

6.
朱明  刘漫丹 《电视技术》2016,40(10):71-76
LEACH协议是无线传感器网络中最流行的分簇路由协议之一.针对LEACH算法簇分布不均匀以及网络能耗不均衡等问题提出了一种高效节能多跳路由算法.在簇建立阶段,新算法根据网络模型计算出最优簇头间距值,调整节点通信半径以控制簇的大小,形成合理网络拓扑结构;在数据传输阶段,簇头与基站之间采用多跳的通信方式,降低了节点能耗.在TinyOS操作系统下,使用nesC语言设计实现了LEACH-EEMH算法.基于TOSSIM平台的仿真结果表明,新算法较LEACH算法在均衡网络能耗、延长网络寿命方面具有显著优势.  相似文献   

7.
无线传感器网络(Wireless Sensor Networks,WSN)的路由协议是无线传感器网络领域中的一个研究热点.针对LEACH协议的不足,提出一种基于自适应t分布改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的改进LEACH协议(LEACH?ISSA),以解决...  相似文献   

8.
基于节点移动和协作转发的异构传感器网络路由协议   总被引:2,自引:2,他引:0  
在异构传感器网络中,超级节点有着重要的意义.针对异构传感器网络中超级节点能量消耗过快的问题,提出了一种新的分簇路由协议(MCC).通过在建簇阶段采用簇首移动控制策略来使簇内负载更加均衡;在簇间数据传输时引入了节点协作转发机制,提高了分簇协议的数据传输性能.通过NS2仿真验证,结果表明,MCC协议不仅降低了簇首能耗,而且使网络能耗更加均匀,延长了网络寿命.  相似文献   

9.
The existing uneven clustering algorithm have disadvantages of coal mine with long strip structure. This paper proposed a UCEB-CMF protocol to improve the safety of coal mine monitoring system. The new protocol optimize the selection mechanism of the cluster head, avoid the lower residual energy nodes become the cluster head. Improve the calculation method of non-uniform competition radius and the competition way of the candidate cluster head, so the new protocol can ensure the node which close to the Sink node and has the more energy to priority become the cluster head. Propose a multipath routing algorithm according to the characteristics of the node in the coal mine goaf is die easily, it can ensure the persistence of the data transmission. Simulation results show that the routing protocol effectively balances the energy consumption among cluster heads and achieves an obvious improvement on the network life time.  相似文献   

10.
提出了一种新的能量有效的非均匀分簇路由协议—UCRP.根据距离基站的远近将网络分为大小不同的簇;簇内数据传输根据簇范围的大小采用单跳或多跳;簇间数据传输构建多跳路由,簇首选择下一跳节点时将能量与最小跳数路由算法相结合;最后在能量有效的前提下对LEACH协议易受到HELLO flooding攻击提出了安全设想.仿真结果表明:该协议能够有效地均衡簇首和全网能耗,延长网络生存时间.  相似文献   

11.
网络编码能够提升无线网络传输性能,网络中的节点若采用传统的全网络编码,必须等待所有的数据包到达后才能进行解码,而这将造成网络的延迟。通过将部分网络编码和机会路由相结合,提出了一种新的路由协议(ORoPNC),该协议可以降低网络编码延迟,提高网络的稳定性。同时,设计了一种新的转发策略——ETXoEC。在这一策略下,转发节点的选取决定于当前链路状态和节点的剩余能量。仿真结果表明,网络的延迟降低了25%左右,能量消耗也得到了较好的平衡,整个网络的稳定性得到进一步提高。  相似文献   

12.
The paper proposes an energy efficient quality of services (QoS) aware hierarchical KF-MAC routing protocol in mobile ad-hoc networks. The proposed KF-MAC (K-means cluster formation firefly cluster head selection based MAC routing) protocol reduces the concentration of QoS parameters when the node transmits data from source to destination. At first, K-means clustering technique is utilized for clustering the network into nodes. Then the clustered nodes are classified and optimized by the firefly optimization algorithm to find cluster heads for the clustered nodes. The transmission of data begins in the network nodes and TDMA based MAC routing does communication. The observation on KF-MAC protocol performs well for QoS parameters such as bandwidth, delay, bit error rate and jitter. The evaluation of proposed protocol based on a simulation study concludes that the proposed protocol provides a better result in contrast to the existing fuzzy based energy aware routing protocol and modified dynamic source routing protocol. With KF-MAC protocol, the collision free data transmission with low average energy consumption is achieved.  相似文献   

13.
Underwater wireless sensor network (UWSN) is a network made up of underwater sensor nodes, anchor nodes, surface sink nodes or surface stations, and the offshore sink node. Energy consumption, limited bandwidth, propagation delay, high bit error rate, stability, scalability, and network lifetime are the key challenges related to underwater wireless sensor networks. Clustering is used to mitigate these issues. In this work, fuzzy-based unequal clustering protocol (FBUCP) is proposed that does cluster head selection using fuzzy logic as it can deal with the uncertainties of the harsh atmosphere in the water. Cluster heads are selected using linguistic input variables like distance to the surface sink node, residual energy, and node density and linguistic output variables like cluster head advertisement radius and rank of underwater sensor nodes. Unequal clustering is used to have an unequal size of the cluster which deals with the problem of excess energy usage of the underwater sensor nodes near the surface sink node, called the hot spot problem. Data gathered by the cluster heads are transmitted to the surface sink node using neighboring cluster heads in the direction of the surface sink node. Dijkstra's shortest path algorithm is used for multi-hop and inter-cluster routing. The FBUCP is compared with the LEACH-UWSN, CDBR, and FBCA protocols for underwater wireless sensor networks. A comparative analysis shows that in first node dies, the FBUCP is up to 80% better, has 64.86% more network lifetime, has 91% more number of packets transmitted to the surface sink node, and is up to 58.81% more energy efficient than LEACH-UWSN, CDBR, and FBCA.  相似文献   

14.
基于BWAS的无线传感器网络静态分簇路由算法   总被引:1,自引:1,他引:0  
为提高路径搜索效率,避免动态分簇较多的能量消耗,提出了基于最优-最差蚂蚁系统(BWAS)的无线传感器网络静态分簇路由算法.BWAS是对蚁群算法的改进,在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加快了路径搜索速度.通过无线传感器网络静态分簇、簇内动态选举簇头,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,能减少路径寻优能量消耗,实现均衡能量管理,延长网络寿命,且具有较强的鲁棒性.通过与基于BWAS的动态分簇和基于蚁群算法的动态分簇路由的仿真实验相比较,证实了本算法的有效性.  相似文献   

15.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

16.
Routing protocol plays a role of great importance in the performance of wireless sensor networks (WSNs). A centralized balance clustering routing protocol based on location is proposed for WSN with random distribution in this paper. In order to keep clustering balanced through the whole lifetime of the network and adapt to the non-uniform distribution of sensor nodes, we design a systemic algorithm for clustering. First, the algorithm determines the cluster number according to condition of the network, and adjusts the hexagonal clustering results to balance the number of nodes of each cluster. Second, it selects cluster heads in each cluster base on the energy and distribution of nodes, and optimizes the clustering results to minimize energy consumption. Finally, it allocates suitable time slots for transmission to avoid collision. Simulation results demonstrate that the proposed protocol can balance the energy consumption and improve the network throughput and lifetime significantly.  相似文献   

17.

Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.

  相似文献   

18.
任克强  余建华  谢斌 《电视技术》2015,39(13):69-72
为了降低无线传感器网络(WSN)的能耗,延长网络的生存周期,提出一种多簇头双工作模式的分簇路由算法.算法对低功耗自适应集簇分层(LEACH)协议作了以下改进:采用多簇头双工作模式来分担单簇头的负荷,以解决单簇头因能耗较大而过早消亡的问题;选举簇头时充分考虑节点位置和节点剩余能量,并应用粒子群优化(PSO)算法优化簇头的选举,以均衡网络内各节点的能耗;建立簇与簇之间的数据传输路由,以减少簇间通信的能耗.仿真结果表明,算法有效降低了网络的能耗,延长了网络的生存周期.  相似文献   

19.
无线传感器网络节点能量有限,因此为了避免由于节点的能量不足而造成网络瘫痪,在组网过程中必须要充分考虑到节点能量的情况,Leach协议是其中一种典型的网络分簇路由协议。针对传统leach协议在分簇过程中未能考虑网络内节点能量以及簇首数量的基础上,提出一种新的簇首选取优化算法,旨在达到均衡网络能量、延长网络生命周期的结果。经OPNET仿真表明,该算法能快速选择簇首、节省节点能量以及均衡网络的能量分布,最后有效地延长网络的生命周期。  相似文献   

20.
Due to low cost, ease of implementation and flexibility of wireless sensor networks (WSNs), WSNs are considered to be an essential technology to support the smart grid (SG) application. The prime concern is to increase the lifetime in order to find the active sensor node and thereby to find once the sensor node (SN) dies in any region. For this reason, an energy-efficient Dynamic Source Routing (DSR) protocol needs to provide the right stability region with a prolonged network lifetime. This work is an effort to extend the network's existence by finding and correcting the considerable energy leveraging behaviors of WSN. We build a comprehensive model based on real measures of SG path loss for different conditions by using the characteristics of WSN nodes and channel characteristics. This method also establishes a hierarchical network structure of balanced clusters and an energy-harvesting SN. The cluster heads (CHs) are chosen by these SN using a low overhead passive clustering strategy. The cluster formation method is focused on the use of passive clustering of the particle swarm optimization (PSO). For the sake of eliminating delayed output in the WSN, energy competent dynamic source routing protocol (EC-DSR) is used. Chicken swarm optimization (CSO) in which optimum cluster path calculation shall be done where distance and residual energy should be regarded as limitation. Finally, the results are carried out with regard to the packet distribution ratio, throughput, overhead management, and average end-to-end delay to demonstrate the efficiency of the proposed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号