首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
激光制造中熔池温度场的检测具有重要的实用价值,温度场是激光加工中重要的技术参量,它直接影响加工质量.研究其分布情况,对于控制激光熔池形貌、改进工艺设计、提高激光加工精度和质量,都具有重要意义.提出了基于数字信号处理器(DSP)图像处理方法,对激光熔池温度场进行检测.采用DSP对图像进行实时处理,处理过程脱离PC机,简便、高效.结果表明,采用该图像处理方法可以得到与激光加工工艺参数相关的激光熔池形貌尺寸、激光熔池温度场二维数值分布等信息.进一步发展,可用于激光加工的在线监控和反馈控制.  相似文献   

2.
针对激光制造过程中的高温金属熔池光谱特征分析,提出采用CCD光栅检测光谱技术检测其分布.检测了钨灯、钠灯、氘灯和汞灯的光谱曲线,得到了其在对应特征波长处光强随波长的分布,根据检测结果对系统进行了波长校准.结果表明,系统有比较高的波长准确度,对连续光谱、线光谱均能实现较稳定的检测.结合激光制造的实际情况,避开强激光反射的影响,该系统将能用于激光制造过程中的熔池光谱检测,为进一步分析激光熔池动态信息提供新的技术手段.  相似文献   

3.
陈娟  杨洗陈  雷剑波 《应用激光》2006,26(4):220-222
为了更好的研究激光与材料表面的相互作用,采用非接触式测温方法对激光再制造熔池温度场进行了检测。利用CCD对激光熔池进行拍摄,通过数字图像处理技术对拍摄图片进行处理,经过温度标定后便可以得到激光熔池温度场的分布情况。结果表明结合数字图像处理的温度场检测技术可以表征激光熔池温度场的分布规律。  相似文献   

4.
研制了一套激光熔池CCD测温系统专用软件,用于激光熔池温度场分析。在熔池斜上方固定安装激光熔池CCD测温装置,拍摄激光熔池,CCD经过光电转换产生代表熔池辐照度信息的信号,经过图像卡采集后,采用专用软件处理,就可以通过计算机显示熔池热辐射过程图像,并得到熔池温度场分布。结果表明,该软件界面简洁、操作简单,能够给出激光熔池温度场分布、尺寸、加工工艺等信息,进一步发展,可用于激光加工的在线监控和反馈控制。  相似文献   

5.
雷剑波  杨洗陈  陈娟  王云山  王雨 《中国激光》2007,34(s1):357-359
提出采用CCD相机结合数字图像处理技术检测监控激光熔池方案,建立了激光熔池动态过程检测系统,开发了激光熔池图像处理专用软件,进行了激光熔敷实验研究。结果表明,该技术可以检测激光熔池温度和几何尺寸,记录熔池动态变化过程。进一步发展,可成为激光加工在线检测过程的有用工具。  相似文献   

6.
激光熔覆熔池表面温度场分布的检测   总被引:5,自引:1,他引:4  
雷剑波  杨洗陈  陈娟  王云山 《中国激光》2008,35(10):1605-1608
采用电荷耦合器件(CCD)高温检测技术,检测了送粉同步式和预置式两种不同工艺下Ni基合金激光熔覆熔池,得到了其在不同功率下的熔池形貌、尺寸和温度场分布.结果表明,当激光功率低于1100 W时,合金粉末熔化不均匀,熔池形貌不规则;当激光功率达到1300 W时,熔池形貌近似椭圆形分布,比较规则平滑,x,y方向尺寸分别为2.8 mm,2.7 mm,平均温度为1800 K,其形貌和尺寸趋于稳定;当激光功率继续增加时,熔池形貌基本不变,但平均温度增加,由于高温热传导熔化,熔池尺寸会有少量增加.  相似文献   

7.
CO2激光熔凝中熔池冷却过程检测研究   总被引:2,自引:2,他引:0  
为了研究激光熔凝温度场的分布,采用非接触式的直接检测方法,研制了一套新型激光熔池动态检测系统,实时拍摄了激光熔凝中熔池冷却过程热辐射图像,进行了理论分析和实验验证,取得了熔池冷却时非稳态温度场分布数据。结果表明,激光熔凝熔池冷却过程分为熔化凝固和固态降温两个过程,检测得到了熔化时间、凝固时间、熔池温度场分布、熔池尺寸等信息。这一结果对于激光熔凝工艺参数的优化选择设计是有帮助的。  相似文献   

8.
激光熔覆是一种新兴的材料表面技术,近年来得到了快速发展。激光熔覆层的质量受熔覆过程中多种因素的影响,其中熔池温度是一个非常关键的因素,激光熔覆熔池温度的监测与控制系统的研究对提高熔覆层质量具有重大意义。介绍了激光熔覆熔池温度的检测方法,综述了目前激光熔覆熔池温度控制系统的研究现状,并列举了部分温度控制系统。根据目前国内外的发展现状提出了熔池温度监测与控制系统的发展方向。  相似文献   

9.
激光熔注WCp/Ti-6Al-4V梯度复合材料层形成机制   总被引:2,自引:1,他引:1  
采用激光熔注(LMI)技术在Ti-6Al-4V表面制备了WCp/Ti-6Al-4V梯度复合材料(MMC)层,对其形成机制进行了研究.研究结果表明,WC颗粒在复合材料层中的分布与其初始速度v0、穿越熔池表面最小临界速度vmin以及熔池粘度η有关.由于WC陶瓷颗粒密度大,在激光熔注过程中具有较高的动能,熔池粘度不再是决定梯度复合材料层形成的关键因素.对于WC/Ti材料体系,熔池凝固前沿是形成WCp/Ti-6Al-4V梯度复合材料层的重要因素,复合材料层不同深度范围内WC颗粒的数量由这一深度熔池凝同前沿长度所决定.WC颗粒注入位置对其在复合材料层中的分布有很大影响.在WC颗粒由熔池后部"拖尾"注入的情况下,该区域熔池深度较浅,WC颗粒遇到的熔池凝固前沿位于较高的位置,大多数WC颗粒被"冻结"在复合材料层的上部,进而形成了WCp/Ti-6Al-4V梯度复合材料层.  相似文献   

10.
建立了描述电磁搅拌辅助激光熔凝过程的电磁场和流场的三维数学模型,采用有限元和有限体积结合的方法实现激光熔池中电磁场与温度场及流场的耦合模拟分析,研究了电磁场对激光熔池流场与温度场的影响。结果表明,电磁力在水平面上呈周向分布,切向电磁力的大小从熔池边缘到中心递减;在旋转磁场的作用下,熔池内温度略有降低,温度梯度减小;熔池内液体趋向旋转运动,速度场分布与电磁力相似;熔池纵向环流增加,使熔池内的熔体对流加剧,有利于传热,加快冷却;激励电流大小对电磁场和熔池流场有明显影响。为激光加工提供理论参考。  相似文献   

11.
姜淑娟  王可 《红外与激光工程》2016,45(12):1206003-1206003(5)
对金属零件激光成形过程闭环控制系统中,熔覆宽度的检测技术进行了研究,提出了一种基于卡尔曼滤波技术的熔覆宽度检测方法。利用视觉传感系统获取激光加工过程中的熔池图像,经过图像处理与图像标定求熔覆宽度作为参量建立系统状态方程和测量方程,应用卡尔曼滤波算法对图像上的熔宽和熔宽变化进行状态估计,得到最小均方差条件下的熔覆宽度最佳预测值,从而减小过程噪声和测量噪声引起的熔覆宽度测量偏差,测量平均误差由0.028 mm降为0.009 3 mm,实现加工过程熔覆宽度的精确检测。实验结果证明:将卡尔曼滤波技术应用到熔覆宽度检测过程中可以大大提高熔宽检测精度。  相似文献   

12.
陈星  葛亚琼 《激光技术》2020,44(2):202-205
为了研究激光增材制备非晶合金过程中熔池和热影响区的成形机制, 利用有限元软件ANSYS, 对激光增材制造技术的基础过程-激光快速熔凝Zr65Al7.5Ni10Cu17.5非晶合金的热效应进行了数值模拟分析。结果表明, 激光单点熔凝时, 熔池的平均冷却速率为6.3×104K/s, 热影响区的平均冷却速率为1.4×104K/s, 远高于Zr65Al7.5Ni10Cu17.5非晶合金的临界冷却速率1.5K/s, 说明激光单点熔凝的热变化满足非晶合金的生长条件; 激光单道熔凝过程中, 熔池的平均冷却速率仍比较高, 为2.11×102K/s, 但热影响区的平均冷却速率较低, 为74K/s, 且热影响区会产生弛豫累积, 可能造成一定程度的晶化。此研究为激光增材制备非晶合金材料提供热效应的理论基础。  相似文献   

13.
针对选区激光熔化(SLM)工艺参数的匹配性对成形质量的影响,选取三种激光功率在不同的扫描速度和扫描方式下进行实验,研究了激光功率对熔池形貌及残余应力的影响。结果表明:随着激光功率增大,熔池的几何尺寸和成形件中的残余应力均变大。这主要是因为在上述参数序列下,随着激光功率增大,热流密度增大,相同层厚与截面下的温度梯度增大,熔池温度升高,熔池尺寸变大,从而导致成形件熔融时的晶面夹角及晶界间距较大,进而产生了较大的热应力,成形件冷却凝固后的残余应力过大。在实际应用中,通过合理设计匹配的工艺参数,可以得到较适合的熔池几何尺寸(即较合理的温度梯度分布),从而减小热应力,进而减小残余应力,得到成形质量较高的SLM工件。  相似文献   

14.
保护箱中激光沉积的粉末流、熔池观测与分析   总被引:2,自引:2,他引:2  
通过CCD摄像机对保护箱中的同轴送Nb,Ti,Al混合金属粉的喷嘴出口的粉末汇聚情况和沉积过程的熔池形貌进行了实时观察与分析。根据微粒光散射理论对CCD拍摄的粉末流图像进行分析,得出了不同位置处粉末流的分布模型,并结合实验获取了用于激光沉积的同轴送粉喷嘴到沉积表面的适用距离区间。通过图像处理程序对熔池形貌进行提取,分析了工艺参量对熔池形貌的影响;对多层沉积过程中沉积层的熔池形貌特征、熔池波动现象等进行了较详细的分析探讨。通过系统的观测与分析,深入理解粉末流的汇聚与熔池的实时变动行为,有利于更好地控制激光沉积过程。  相似文献   

15.
激光熔覆快速成形过程中,熔覆层高度是由激光参数,加工工艺,粉末材料等多种因素共同决定。基于CCD实现了对成形过程的实时监测,并通过基于VC++开发的图像处理软件,有效的提取激光熔池中心到激光头之间的高度信息来控制熔覆堆积过程,从而确保了熔覆过程的顺利进行,提高了成形件的加工质量,为激光熔覆快速成形制造技术的在线监测提供了新的手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号