首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高掺杂浓度Yb:YAG晶体的生长及光谱性能   总被引:4,自引:4,他引:0  
应用中频感应提拉法生长了掺杂浓度高达50at.-%的Yb:YAG晶体,研究了室温下Yb:YAG晶体的吸收和发射光谱特性以及荧光寿命,在939nm和969nm处存在Yb^3 离子的2个吸收带,能与InGaAs激光二极管(LD)有效耦合,适合激光管二极抽运。其荧光主峰位于1032nm附近,Yb:YAG晶体的荧光寿命为390μs。比较了高掺杂与低掺杂Yb:YAG晶体的光谱参数,指出高掺杂Yb:YAG晶体是一种很有前景的高功率激光增益介质。  相似文献   

2.
采用提拉法生长了Yb掺杂原子数分数为0.5%的Yb∶Y3Al5O12(Yb∶YAG)晶体,对晶体的吸收光谱和荧光光谱进行了分析。与Yb掺杂原子数分数为5%的Yb∶YAG晶体进行了对比,得出采用940 nm激光二极管(LD)抽运晶体最为合适。原子数分数为0.5%的Yb∶YAG晶体相对于原子数分数为5%的Yb∶YAG晶体自吸收效应的影响要小。测量了原子数分数为0.5%的Yb∶YAG晶体的荧光寿命为0.95 ms,与理论值很接近。因此采用原子数分数为0.5%的Yb∶YAG晶体作为激光工作物质将有利于高效、小型集成化的固体激光器的发展。  相似文献   

3.
为了对Yb∶YAG晶体荧光性能进行调控以使其更好地应用于高能脉冲型激光器,结合密度泛函理论和晶体场理论,对掺杂调控后的Yb∶YAG晶体的电子结构、光谱学性质进行了理论计算,分析了不同粒子掺杂和占据格位情况下Yb∶YAG晶体的荧光性能,并在此基础上计算配方完成晶体生长实验、制备样品进行荧光性能测试验证。结果表明,通过以上过程掌握了Yb∶YAG晶体荧光寿命等参数的调控方法,共掺Cr后的Yb∶YAG荧光寿命可以从1.18 ms降低至0.94 ms。该研究为Yb∶YAG晶体实现高能脉冲激光应用奠定了理论和实验基础。  相似文献   

4.
测定了提拉法生长的不同掺杂浓度的Yb∶YAG晶体从紫外到近红外区的吸收光谱 ,发现高温氧化气氛退火后原先可见光区色心宽带吸收消失的同时 ,在紫外区出现新的吸收带 ,并通过色心的转化对这一现象进行了解释。在紫外区和近红外区吸收光谱中 ,发现随掺杂浓度的升高 2 2 0nm和 94 0nm附近的吸收带的位置略有移动 ,提出是由于Yb3+ 离子掺杂引起的晶格结构畸变导致了Yb∶YAG晶体光谱性质的改变。通过X射线衍射对不同掺杂浓度Yb∶YAG晶体晶胞参数的测定 ,证实高的掺杂浓度导致Yb∶YAG晶体发生较大的晶格畸变。在不同掺杂浓度Yb∶YAG晶体的激光实验中 ,观察到Yb3+ 离子掺杂浓度影响晶体的激光性能  相似文献   

5.
报道了自调Q激光晶体Cr,Yb∶YAG的生长及其在室温的吸收和荧光光谱特性,用钛宝石激光器作为抽运源,获得了1.03 μm、脉宽为400ns、平均输出功率为75 mW的自调Q激光.在Cr,Yb∶YAG晶体的室温吸收光谱中存在着五个吸收带:在440 nm 和605 nm 存在着Cr3+离子的两个吸收带,而且退火使其发生了明显的"红移";在937 nm 和968 nm处存在着Yb3+离子的两个吸收带,能与InGaAs 激光二极管(LD)有效耦合,适合激光二极管抽运;而且在1.03 μm处有一Cr4+离子吸收峰,可用作可饱和吸收体.Cr,Yb∶YAG晶体的荧光光谱与Yb∶YAG晶体一样,发光中心也是位于1029 nm,但其强度比Yb∶YAG晶体的要低4倍.Cr,Yb∶YAG晶体和Yb∶YAG晶体的荧光寿命分别为0.3 ms和1.4 ms.造成Cr,Yb∶YAG晶体发光强度比Yb∶YAG晶体低的原因可能是由于存在Cr4+和Cr3+离子的吸收使得Yb离子发生浓度淬灭,但如果用高功率的二极管来抽运,使得Yb离子能发生粒子反转,可以实现Cr4+对Yb3+的自调Q激光输出.在室温下用钛宝石激光器抽运Cr,Yb∶YAG晶体获得自调Q激光输出也证明了双掺Cr和Yb的YAG晶体是一种新型的自调Q激光晶体,进一步可以实现固体激光器的小型化、全固化、集成化.(OH3)  相似文献   

6.
研究了不同掺杂浓度的Yb∶YAG晶体氢气退火前后的色心吸收 ,发现随着Yb2 O3 浓度的增加 ,色心浓度并不增加。测量了退火前后不同浓度晶体的荧光光谱和荧光寿命 ,指出低浓度掺杂时 ,色心对发光强度和荧光寿命没有猝灭作用 ,只有在掺杂浓度大于 1 0at. %时 ,色心吸收的加强对发光强度和荧光寿命才有明显猝灭作用  相似文献   

7.
Yb掺杂原子数分数为0.5%的Yb:Y3MAl5O12晶体的光谱分析   总被引:1,自引:0,他引:1  
采用提拉法生长了Yb掺杂原子数分数为0.5%的Yb:Y3Al5O12(Yb:YAG)晶体,对晶体的吸收光谱和荧光光谱进行了分析。与Yb掺杂原子数分数为5%的Yb:YAG晶体进行了对比,得出采用940 nm激光二极管(LD)抽运晶体最为合适。原子数分数为0.5%的Yb:YAG晶体相对于原子数分数为5%的Yb:YAG晶体自吸收效应的影响要小。测量了原子数分数为0.5%的Yb:YAG晶体的荧光寿命为0.95 ms,与理论值很接近。因此采用原子数分数为0.5%的Yb:YAG晶体作为激光工作物质将有利于高效、小型集成化的固体激光器的发展。  相似文献   

8.
采用提拉法生长了Yb掺杂原子数分数为0.5%的Yb:Y3Al5O12。(Yb2YAG)晶体,对晶体的吸收光谱和荧光光谱进行了分析。与Yb掺杂原子数分数为5%的Yb:YAG晶体进行了对比,得出采用940nm激光二极管(LD)抽运晶体最为合适。原子数分数为0.5%的Yb:YAG晶体相对于原子数分数为5%的Yb:YAG晶体白吸收效应的影响要小。测量了原子数分数为0.5%的Yb:YAG晶体的荧光寿命为0.95ms,与理论值很接近。因此采用原子数分数为0.5%的Yb:YAG晶体作为激光工作物质将有利于高效、小型集成化的固体激光器的发展。  相似文献   

9.
YAG单晶是高功率激光的重要材料,近年来高透明度多晶陶瓷作为激光介质引起人们广泛的注意。YAG陶瓷相对单晶具有易制造大尺寸、掺杂浓度高、易批量生产等优点。在Nd∶YAG陶瓷获得长足发展的同时,Yb掺杂的陶瓷也得到了越来越多的关注。Yb∶YAG陶瓷与Nd∶YAG陶瓷相比具有许多优点:Yb掺杂的激光介质无交叉弛豫振荡和激发态吸收,有较宽的吸收带,较长的荧光寿命及较高的量子效率等。因此,高质量的Yb∶YAG陶瓷将是非常理想的高功率激光材料。最近,中国科学院上海硅酸盐研究所制备了Yb∶YAG多晶透明陶瓷并经中国科学院上海光学精密机械…  相似文献   

10.
Yb:YAG激光晶体的高温退火和高浓度掺杂效应   总被引:2,自引:1,他引:2  
测定了提拉法生长的不同掺杂浓度的Yb:YAG晶体从紫外到近红外区的吸收光谱,发现高温氧化气氛退火后原先可见光区色心宽带吸收消失的同时,在紫外区出现新的吸收带,并通过色心的转化对这一现象进行了解释.在紫外区和近红外区吸收光谱中,发现随掺杂浓度的升高220 nm和940 nm附近的吸收带的位置略有移动,提出是由于Yb3+离子掺杂引起的晶格结构畸变导致了Yb:YAG晶体光谱性质的改变.通过X射线衍射对不同掺杂浓度Yb:YAG晶体晶胞参数的测定,证实高的掺杂浓度导致Yb:YAG晶体发生较大的晶格畸变.在不同掺杂浓度Yb:YAG晶体的激光实验中,观察到Yb3+离子掺杂浓度影响晶体的激光性能.  相似文献   

11.
测量了温梯法生长的Yb:YAG晶体的吸收光谱、荧光光谱和荧光寿命,比较了氧化和还原气氛退火对其影响。晶体主吸收峰938 nm和967 nm处的吸收截面分别为0.74×10-20cm2和0.36×10-20cm2。通过光谱分析,没有发现Yb:YAG晶体中Yb2 离子的存在。发现晶体边缘位置处不同的紫外吸收。  相似文献   

12.
采用水平定向结晶(HDC)法成功生长出160 mm×80 mm×20 mm的Yb∶Y3Al5O12(Yb∶YAG)晶体,并对其头部、中部、尾部取样进行了系统测试分析。结果表明,晶体结晶质量良好,不同位置晶片的Yb3+掺杂浓度、吸收光谱、荧光光谱、荧光寿命等指标具有良好的均一性,并与提拉法生长的低浓度Yb∶YAG晶体处于相似水平,在935 nm处吸收截面为1.2×10-20cm2, 在1 024 nm处发射截面达到峰值(3.2×10-20cm2),荧光寿命可达1.08 ms,水平定向结晶法生长的晶体无核心、侧心优势,对制作大尺寸板条状激光晶体有巨大的应用前景。  相似文献   

13.
宋平新  赵志伟  徐晓东  邓佩珍  徐军 《中国激光》2005,32(10):1433-1436
应用中频感应提拉法生长出不同掺杂浓度的Yb∶FAP激光晶体。运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定了Yb3+离子在Yb∶FAP晶体中的分凝系数约为0.03。随着晶体的生长,晶体中Yb3+离子的轴向浓度逐渐增大。研究Yb∶FAP晶体在77 K和300 K温度下的吸收光谱发现,振动谱的变化主要是由电子-声子近共振耦合作用引起的。系统地研究了不同Yb3+离子掺杂浓度Yb∶FAP晶体的吸收光谱和荧光光谱。通过吸收光谱的测量计算了晶体的吸收截面。Yb∶FAP晶体在904 nm和982 nm处存在Yb3+离子的两个吸收带,适合激光二极管抽运。  相似文献   

14.
Yb∶YCa4O(BO3)3(简称Yb∶YCOB)晶体是1998年报道的新材料[1],具有荧光寿命长(是Yb∶YAG的2.4倍)、吸收波段宽、非线性系数大、能实现自倍频运转等优点,是激光倍频和激光自倍频晶体的新品种.我们对该材料的多晶制备、单晶生长、吸收光谱、荧光光谱、荧光寿命和激光器件等进行了比较系统的研究,取得了一些结果.  相似文献   

15.
采用助熔剂法生长了不同Yb3+掺杂量的Ybx:Gd0.20Y0.8-xAl3(BO3)4 (Yb:GdYAB).对比分析Yb3+掺杂量对晶体的晶胞参数、室温吸收光谱、荧光光谱、荧光寿命、比热等性质的影响,结果表明,Yb3+掺杂量对晶体的生长、光谱和比热有较大的影响.随着Yb3+掺杂量的增加,吸收峰的半波宽增大,吸收强度提高.随着Yb3+掺杂量的增加,Yb:GdYAB晶体的荧光光谱的强度下降,荧光寿命逐渐降低.随着Yb3+掺杂量的增加,Yb:GdYAB晶体的比热逐渐变小.研究结果表明,选择适中的Yb3+掺杂量,不仅有利于Yb:GdYAB晶体的生长,也能保证各种性能都较优良,更有利于实现自倍频激光的输出.  相似文献   

16.
从准三能级速率方程出发, 模拟分析了940 nm LD端面抽运Yb3+∶YAG输出1030 nm激光的性能。着重考虑了抽运光的吸收饱和以及Yb3+的自吸收损耗。结果表明, 由于输出波长在1030 nm附近的Yb3+∶YAG晶体存在严重的自吸收损耗, 入射功率必须足够强才能有激光输出, 因此激光器的阈值较高; 同时, 自吸收损耗与Yb3+离子浓度、晶体厚度有关, 存在最佳的晶体厚度和Yb3+离子浓度, 使激光器的输出功率最大。抽运光的吸收饱和使激光器运转时激光下能级的粒子数减小, 吸收系数下降, 激光器的输出功率较低。  相似文献   

17.
低功率激光二极管抽运的室温运转Yb:YAG激光器   总被引:2,自引:2,他引:2  
报道了低功率激光二极管(LD)抽运的1030nm Yb:YAG全固态激光器。由于Yb:YAG为准三能级结构,自吸收损耗大,振荡阈值高,因此采用双路偏振耦合系统增加注入功率密度,并通过降低晶体掺杂浓度,选取合适晶体厚度,用半导体制冷器(TEC)有效制冷,在线性腔中实现了1030nm波长稳定输出。Yb:YAG晶体Yb离子掺杂原子数分数为8%,几何尺寸为11mm×0.7mm,晶体面对输出镜一端镀940nm高反膜,使未被吸收的抽运光反射回去,再次抽运晶体,从而提高了抽运光的利用效率,当注入功率为2W时,1030nm输出功率为192.8mW,光-光转换效率为9.6%,2h内稳定度小于3.5%。  相似文献   

18.
本课题组于1996年首先在国内开始Yb∶YAG激光晶体研究;1997年于国内首次获得脉冲激光输出;1998年于国内首次获得连续波激光输出. 为了进一步提高Yb∶YAG激光晶体的品质,开展了以消除杂质离子和色心为目的的中频感应加热提拉法生长研究.生长中采用Al2O3、Y2O3和高纯Yb2O3粉料.已经能够生长掺杂浓度高达30at%的Yb∶YAG晶体毛坯,尺寸约为30 mm×(80~100) mm.同时通过高温氧化退火消除了色心. 在以色列本*古里安大学对本课题组生长的10at%掺杂Yb∶YAG晶体进行了高功率激光二极管抽运的激光实验,抽运波长为940 nm.实验中Yb∶YAG晶体的尺寸为Φ1.5×1 mm的微片,两平行端面抛光处理,一面镀940 nm波长的HT增透膜和1030 nm波长的HR高反膜作为激光腔的后腔镜,另一面镀1030 nm波长的AR增透膜.1030nm波长激光输出腔镜的透过率分别为1%、2%和5%,整个激光腔的长度为15 mm.在10°C低温条件下,激光二极管抽运功率为18 W和输出耦合镜的透过率为5%时, Yb∶YAG晶体微片获得的最大连续激光输出功率为5.2 W;对于三种不同的输出耦合率,分别得到高达33%的斜率效率,而且晶体的抽运阈值较低(为2.2 W).在实验过程中没有出现饱和现象.(OC9)  相似文献   

19.
Yb3+离子掺杂YAG晶体(Yb∶YAG)作为一种性能优良的激光晶体已广泛应用于高效、 高功率激光领域,在光纤温度传感器、激光切割钻孔以及军用领域都具有重要的应用价值。本文分析了Yb∶YAG作为激光增益介质的优势,对近年来国内外激光二极管泵浦Yb∶YAG激光器的研究进展进行了总结,分别介绍了Yb∶YAG透明陶瓷激光器、掺镱光纤激光器,可调谐Yb∶YAG激光器、Yb∶YAG薄片激光器以及双波长Yb∶YAG激光器的最新研究情况,并对其发展前景进行了展望。  相似文献   

20.
Yb3+激光材料在900~980 nm范围具有较强的吸收,能与高效的InGaAs激光二极管(波长为900~1100 nm)有效地耦合,且能级简单,抽运波长与振荡波长相近,量子效率高。这些优点十分有利于在1000 nm附近实现超快高功率激光输出。而随着高性能InGaAs激光二极管的发展和成本的降低,近年来,掺Yb3+激光介质的研究受到人们的极大关注,并研制出了许多新型激光晶体,如Yb∶YAG,Yb∶KYW,Yb∶GdVO4,Yb∶SYS,Yb∶YAB,Yb∶GGG和Yb∶CaF2等[1~10]。但是,这些晶体还有很多不足之处,有的晶体生长比较困难,有的晶体其发射谱带相对较窄,而有的晶体热导性…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号