首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achieving Sub-50 Milliseconds Recovery Upon BGP Peering Link Failures   总被引:3,自引:0,他引:3  
Recent measurements show that BGP peering links can fail as frequently as intradomain links and usually for short periods of time. We propose a new fast-reroute technique where routers are prepared to react quickly to interdomain link failures. For each of its interdomain links, a router precomputes a protection tunnel, i.e., an IP tunnel to an alternate nexthop which can reach the same destinations as via the protected link. We propose a BGP- based auto-discovery technique that allows each router to learn the candidate protection tunnels for its links. Each router selects the best protection tunnels for its links and when it detects an interdomain link failure, it immediately encapsulates the packets to send them through the protection tunnel. Our solution is applicable for the links between large transit ISPs and also for the links between multi-homed stub networks and their providers. Furthermore, we show that transient forwarding loops (and thus the corresponding packet losses) can be avoided during the routing convergence that follows the deactivation of a protection tunnel in BGP/MPLS VPNs and in IP networks using encapsulation.  相似文献   

2.
Multiple Routing Configurations for Fast IP Network Recovery   总被引:2,自引:0,他引:2  
As the Internet takes an increasingly central role in our communications infrastructure, the slow convergence of routing protocols after a network failure becomes a growing problem. To assure fast recovery from link and node failures in IP networks, we present a new recovery scheme called Multiple Routing Configurations (MRC). Our proposed scheme guarantees recovery in all single failure scenarios, using a single mechanism to handle both link and node failures, and without knowing the root cause of the failure. MRC is strictly connectionless, and assumes only destination based hop-by-hop forwarding. MRC is based on keeping additional routing information in the routers, and allows packet forwarding to continue on an alternative output link immediately after the detection of a failure. It can be implemented with only minor changes to existing solutions. In this paper we present MRC, and analyze its performance with respect to scalability, backup path lengths, and load distribution after a failure. We also show how an estimate of the traffic demands in the network can be used to improve the distribution of the recovered traffic, and thus reduce the chances of congestion when MRC is used.  相似文献   

3.
Failure protection methods for optical meshed-ring communications networks   总被引:1,自引:0,他引:1  
We study the survivability of a meshed-ring communication network that employs cross-connect switches. For WDM networks, the cross-connect switches are implemented as wavelength routers. Nodes can also provide cross-connection at the ATM VP (virtual path) level. By meshing the ring, the nodal degree of connectivity is increased as compared to a ring topology, and thus more alternative (protection) paths are available. For routing purposes, wavelength subnetworks are embedded in the topology. Nodes communicate with each other across one of the subnetworks to which both belong. We consider two types of subnetwork topologies to simplify the routing in a normal (nonfailure) situation. For each type of subnetwork, different protection methods are proposed to protect against a single link and/or nodal failure. The throughput performance of such meshed-ring networks under failure conditions is clearly superior to that achieved by (SONET) ring networks. We show that certain protection methods even result in lower values of the protection capacity as well as the protection capacity ratio (i.e., the overall capacity used under a failure divided by the total capacity) as compared to ring networks. We also present methods for constructing wavelength subnetworks to achieve single-failure protection using the minimal number of wavelengths.  相似文献   

4.
A new passive method for automatic discovery and location of network failure is proposed. This method employs a passive measurement to collect information and events from network traffic, and employs a model-based reasoning system to detect and locate network faults.Measurement points are deployed in a backbone network to capture the traffic and then evaluate the Quality of Service (QoS) metrics of end-to-end IP conversations. A routing model is also established for the observed network to simulate the attributes and activities of routers and links. This routing model also deduces the routing path for each IP conversation, and thus the QoS metrics of IP conversations are mapped into the metrics of paths. With the information of shared links of overlapping paths and network tomography technique, the QoS metrics of links can also be estimated, and the poorly rated links are picked out as failure points. This method is implemented in a tool named Fault-Man, which is deployed in a campus network. Test results have shown its availability in middle-scale networks.  相似文献   

5.
Protection approaches for dynamic traffic in IP/MPLS-over-WDM networks   总被引:3,自引:0,他引:3  
Due to the explosive growth of data-related traffic driven by the Internet, network reliability becomes an important issue. We investigate various protection approaches to handle failures for dynamic traffic demands in IP/MPLS-over-WDM networks. An LSP can be protected at either the IP/MPLS layer or the optical layer. In IP/MPLS layer protection, an LSP is protected by providing a link-disjoint backup LSP between its end nodes. In optical layer protection, an LSP is protected by the backup lightpath of each lightpath traversed by the LSP. We present two integrated routing algorithms: hop-based integrated routing algorithm and bandwidth-based integrated routing algorithm (BIRA) to set up the restorable bandwidth-guaranteed paths efficiently. Then we present a multilayer protection scheme for multiclass traffic in such networks. This scheme takes into account the different QoS and recovery requirements of the traffic to provide protection capability either at the MPLS layer or at the optical layer in a cost-effective manner. We use the connection blocking probability and number of optical-electrical-optical conversions as performance metrics to compare various protection approaches.  相似文献   

6.
Integration of multiprotocol label switching functions and multiprotocol lambda switching functions can enhance the throughput of IP networks and remove bottlenecks that are derived from electrical packet processing. To enhance the packet forwarding capability, NTT proposed a photonic MPLS concept that includes MP/spl lambda/S, and demonstrated IP, MPLS, and photonic MPLS integrated router systems called the photonic MPLS router. This router system is now called the Hikari router. The word Hikari is Japanese meaning beam, light, lightwave, optical, photonic, and sunshine. The amount of IP data traffic has grown remarkably. Massive IP routers and flexible route control mechanisms are now required to cope with the increased amount of traffic. The Hikari router can offer two solutions utilizing photonic switching technologies, and photonic network operation and management technologies. The first solution is utilizing photonic switching technologies realized using optical-switch-based crossconnect systems. The other solution is realized using the MPLS and MP/spl lambda/S signaling protocol and photonic network protection functions. In this article we report on the implementation of the Hikari router systems, propose a newly developed disjoint path selection scheme for generalized MPLS networks with shared risk link group constraints, and demonstrate the signaling protocol and network protection functions. The demonstration system achieves a distributed optical path set-up/tear-down protocol with an extended constraint-based routing label distribution protocol. Fast self-healing through automatic protection switching and a new restoration scheme are also implemented. These functions are successfully implemented, and the performance is verified on a demonstration network. The protection switching scheme achieves protection in less than 20 ms, and the optical path restoration scheme achieves restoration in less than 500 ms.  相似文献   

7.
A change in network topology triggers the re-convergence process of routing protocols. The re-convergence time of current routing protocols (e.g. OSPF) is constrained by the possibility of having transient loops due to the independent calculation of shortest paths between routers affected by a network failure. Several IP Fast-ReRoute (IPFRR) schemes have been developed to pro-actively calculate and install alternate forwarding entries almost instantaneously once a topology update message is received, without causing temporary micro-loops. The IPFRR scheme which has been used most extensively so far makes use of Loop-Free Alternates (LFA). While these are easy to configure, LFAs still require manual configuration, and the resulting ratio of covered link failures is only about 60 to 70 percent. This paper presents a logical extension of the Loop-Free Alternate concept, proposes a self-configuring scheme to populate the corresponding alternate entries, and evaluates the performance of the scheme with respect to coverage, configuration time and path length in a simulation environment.  相似文献   

8.
RATES: a server for MPLS traffic engineering   总被引:1,自引:0,他引:1  
It has been suggested that one of the most significant reasons for multiprotocol label switching (MPLS) network deployment is network traffic engineering. The goal of traffic engineering is to make the best use of the network infrastructure, and this is facilitates by the explicit routing feature of MPLS, which allows many of the shortcomings associated with current IP routing schemes to be addressed. This article describes a software system called Routing and Traffic Engineering Server (RATES) developed for MPLS traffic engineering. It also describes some new routing ideas incorporated in RATES for MPLS explicit path selection. The RATES implementation consists of a policy and flow database, a browser-based interface for policy definition and entering resource provisioning requests, and a Common Open Policy Service protocol server-client implementation for communicating paths and resource information to edge routers. RATES also uses the OSPF topology database for dynamically obtaining link state information. RATES can set up bandwidth-guaranteed label-switched (LSPs) between specified ingress-egress pairs. The path selection for LSPs is on a new minimum-interference routing algorithm aimed at making the best use of network infrastructure in an online environment where LSP requests arrive one by one with no a priori information about future requests. Although developed for an MPLS application, the RATES implementation has many similarities in components to an intradomain differentiated services bandwidth broker  相似文献   

9.
Supporting fast restoration for general mesh topologies with minimal network over-build is a technically challenging problem. Traditionally, ring-based SONET networks have offered close to 50 ms restoration at the cost of requiring 100% over-build. Recently, fast (local) reroute has gained momentum in the context of MPLS networks. Fast reroute, when combined with pre-provisioning of protection capacities and bypass tunnels, enables faster restoration times in mesh networks. Pre-provisioning has the additional advantage of greatly simplifying network routing and signaling. Thus, even for protected connections, online routing can now be oblivious to the offered protection, and may only involve single shortest path computations. In this paper, we are interested in the problem of reserving the least amount of the network capacity for protection, while guaranteeing fast (local) reroute-based restoration for all the supported connections. We show that the problem is NP-complete, and we present efficient approximation algorithms for the problem. The solution output by our algorithms is guaranteed to use at most twice the protection capacity, compared to any optimal solution. These guarantees are provided even when the protection is for multiple link failures. In addition, the total amount of protection capacity reserved by these algorithms is just a small fraction of the amount reserved by existing ring-based schemes (e.g., SONET), especially on dense networks. The presented algorithms are computationally efficient, and can even be implemented on the network elements. Our simulation, on some standard core networks, show that our algorithms work well in practice as well  相似文献   

10.
Multipath routing has been extensively employed in wireless mesh networks (WMNs) for providing network reliability and survivability, therefore, improves energy consumptions. To provide network survivability, each user should be protected against failures, either node or link failures. For each request, a primary path is set up for normal transmission, and an alternate path (protection path) should also be provided to protect the request in case of network failure. In this paper, we study how to provide survivability using multi-path scheme for dynamic network traffic, where users’ requests have random arrival times. Compared with previous work, our scheme considers interference and reusability factors when providing multiple paths for each request. By applying our scheme, the numerical results show that we can accommodate about 17% more requests than previous schemes. Meanwhile, the results show that our scheme not only accommodates more requests, but also takes less running time to find a solution for each request.  相似文献   

11.
This paper presents a novel high performance Network-on-Chip (NoC) router architecture design using a bi-directional link with double data rate (BiLink). Ideally, it can provide as high as 2 times speed-up compared with the conventional NoC router. BiLink utilizes an extra link stage between routers and transmits two flits in one link per cycle using phase pipelining if both routers require to use the current link. To further increase the effective bandwidth, the direction of each link can be configured in every clock cycle to cater for different traffic loads from each side. Therefore, the data rate can be as high as 4 times compared with conventional NoC routers under uneven traffic. Centralized mode control scheme is implemented using a finite state machine (FSM) approach. Cycle-accurate simulations are carried out on both synthetic traffic patterns as well as real application benchmarks. Simulation results show that BiLink can provide as high as 90% and 250% speedup compared with conventional NoC routers for even and uneven traffic, respectively. 2X and 3X gains in throughput are obtained under even and uneven traffic, respectively, when compared with the conventional NoC router for the virtual channel flow control. The BiLink router architecture is synthesized using TSMC 65 nm process technology and it is shown that an area overhead of 28% over state-of-the-art bi-directional NoC is introduced while the critical path is about 9% higher than that of the conventional routers. Despite the overhead in critical path and power consumption, a 47.45% improvement of Energy-Delay-Product (EDP) is achieved by BiLink under high injection rate traffic.  相似文献   

12.
We consider the realization of traffic-oblivious routing in IP-over-optical networks where routers are interconnected over a switched optical backbone. The traffic-oblivious routing we consider is a scheme where incoming traffic is first distributed in a preset manner to a set of intermediate nodes. The traffic is then routed from the intermediate nodes to the final destination. This splitting of the routing into two phases simplifies network configuration significantly. In implementing this scheme, the first and second phase paths are realized at the optical layer with router packet grooming at a single intermediate node only. Given this unreliability of routers, we consider how two-phase routing in IP-over-optical networks can be made resilient against router node failures. We propose two different schemes for provisioning the optical layer to handle router node failures-one that is failure node independent and static, and the other that is failure node dependent and dynamic We develop linear programming formulations for both schemes and a fast combinatorial algorithm for the second scheme so as to maximize network throughput. In each case, we determine (i) the optimal distribution of traffic to various intermediate routers for both normal (no-failure) and failure conditions, and (ii) provisioning of optical layer circuits to provide the needed inter-router links. We evaluate the performance of the two router failure protection schemes and compare it with that of unprotected routing  相似文献   

13.
It is well-known that today’s inter-domain routing protocol, Border Gateway Protocol (BGP), converges slowly during network failures. During the convergence period, widespread temporary burst packet loss happens that may be caused by route loops or blackholes. In this paper, we present a Protection Tunnel based Rerouting (PTR)mechanism-a novel scheme for delivering packet continuously during period of convergence. PTR scheme pre-establishes protection tunnel among routers. Once the inter-domain link failed, routers could redirect those influenced packets along protection tunnel to a router that has a valid path to destination. Therefore, packets could be forwarded continuously even encountering fault links. The performances of PTR scheme are simulated. The results demonstrate that PTR scheme is more resilient to link failures than BGP. The cost caused by PTR scheme is very little and acceptable.  相似文献   

14.
The use of alternate routes for traffic grooming in IP/MPLS over wavelength-division multiplexing (WDM) networks may lead to the propagation of congestion from one link to others in the IP/MPLS layer. This can be tackled by using the path inflation control (PIC) strategy proposed here for operating an IP/MPLS over WDM network in the overlay model. This supports dynamic traffic grooming with less blocking than other strategies. Network resource usage is also efficient as new lightpaths are set up for a new label switched path (LSP) request only when indicated by the congestion conditions.  相似文献   

15.
We address the problem of designing IP networks where the traffic is routed using the OSPF protocol. Routers in OSPF networks use link weights set by an administrator for determining how to route the traffic. The routers use all shortest paths when traffic is routed to a destination, and the traffic is evenly balanced by the routers when several paths are equally short. We present a new model for the OSPF network design problem. The model is based on routing patterns and does not explicitly include OSPF weights. The OSPF protocol is modeled by ensuring that all pairs of routing patterns are subpath consistent, which is a necessary condition for the existence of weights. A Lagrangean heuristic is proposed as solution method, and feasible solutions to the problem are generated using a tabu search method. Computational results are reported for random instances and for real-life instances.  相似文献   

16.
IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures.  相似文献   

17.
针对软件定义网络(SDN)链路故障发生时的路由收敛问题,提出了Q-Learning子拓扑收敛技术(QL-STCT)实现软件定义网络链路故障时的路由智能收敛。首先,选取网络中的部分节点作为枢纽节点,依据枢纽节点进行枢纽域的划分。然后,以枢纽域为单位构建区域特征,利用特征提出强化学习智能体探索策略来加快强化学习收敛。最后,通过强化学习构建子拓扑网络用于规划备用路径,并保证在周期窗口内备用路径的性能。实验仿真结果表明,所提方法能够有效提高链路故障网络的收敛速度与性能。  相似文献   

18.
Protected Working Capacity Envelope (PWCE) has been proposed to simplify resource management and traffic control for survivable WDM networks. In a PWCE-based network, part of the link capacity is reserved for accommodating working routes, and the remaining capacity is reserved for backup routes. The shortest path routing is applied in PWCE-based networks. An arrival call is accepted only when each link along the shortest path has a free working channel. Such a working path routing scheme greatly simplifies the call admission control process for dynamic traffic, and it is especially suitable for implementation in a distributed manner among network nodes. In this article, we investigate two protection strategies: Bundle Protection (BP) and Individual Protection (IDP). In BP, only one backup path can be used to protect a failure component, whereas multiple backup paths can be used in IDP. We formulate four mixed integer non-linear programming (MINLP) problems using BP and IDP strategies for single link and single node failure protection. Each model is designed to determine link metrics for shortest working path routing, working and backup channel assignments, and backup path planning. Our objective is to minimize call-blocking probability on the bottleneck link. Since these models are highly non-linear and non-convex, it is difficult to obtain exact global optimal solutions. We propose a Simulated Annealing-based Heuristic (SAH) algorithm to obtain near optimal solutions. This SAH adopts the concepts of simulated annealing as well as the bi-section technique to minimize call-blocking probabilities. To evaluate the performance, we made simulation comparisons between SAH and the unity link weight assignment scheme. The results indicate that SAH can greatly reduce call-blocking probabilities on benchmark and the randomly generated networks.  相似文献   

19.
All-optical four-fiber bidirectional line-switched ring   总被引:2,自引:0,他引:2  
An all-optical four-fiber bidirectional line-switched ring (O-4F/BLSR) architecture is proposed. This new physical layer networking protocol uses wavelengths as tributaries and an optical supervisory channel to carry overhead information. Optical channels can be added and dropped from the ring, and virtual wavelength paths can be provisioned. Both node and link failures of a network can be protected through a two layer protection scheme. Protection switching within the optical multiplex section layer (OMS) restores failure caused by loss of optical continuity in a way similar to the SONET 4F/BLSR line switching. Protection switching within the optical channel layer restores single channel failure using 1:N protection. Test results show that the O-4F/BLSR can restore traffic in less than 50 ms. A self-healing, bandwidth efficient, and scalable all-optical transport network evolving from this O-4F/BLSR architecture is possible  相似文献   

20.
Shared segment protection (SSP), compared with shared path protection (SPP), and shared link protection (SLP), provides an optimal protection configuration due to the ability of maximizing spare capacity sharing, and reducing the restoration time in cases of a single link failure. This paper provides a thorough study on SSP under the GMPLS-based recovery framework, where an effective survivable routing algorithm for SSP is proposed. The tradeoff between the price (i.e., cost representing the amount of resources, and the blocking probability), and the restoration time is extensively studied by simulations on three networks with highly dynamic traffic. We demonstrate that the proposed survivable routing algorithm can be a powerful solution for meeting stringent delay upper bounds for achieving high restorability of transport services. This can significantly improve the network reliability, and enable more advanced, mission critical services in the networks. The comparison among the three protection types further verifies that the proposed scheme can yield significant advantages over shared path protection, and shared link protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号