首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly efficient deep‐blue fluorescent materials based on phenylquinoline–carbazole derivatives (PhQ‐CVz, MeO‐PhQ‐CVz, and CN‐PhQ‐CVz) are synthesized for organic light‐emitting diodes (OLEDs). The materials form high‐quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron‐donating and electron‐withdrawing groups on carbazoylphenylquinoline. Non‐doped deep‐blue OLEDs that use PhQ‐CVz as the emitter show bright emission (Commission Internationale de L'Éclairage (CIE) coordinates, x = 0.156, y = 0.093) with an external quantum efficiency of 2.45%. Furthermore, the material works as an excellent host material for 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl dopant to get high‐performance OLEDs with excellent deep‐blue CIE coordinates (x = 0.155, y = 0.157), high power efficiency (5.98 lm W?1), and high external quantum efficiency (5.22%).  相似文献   

2.
A novel blue‐emitting material, 2‐tert‐butyl‐9,10‐bis[4‐(1,2,2‐triphenylvinyl)phenyl]anthracene ( TPVAn ), which contains an anthracene core and two tetraphenylethylene end‐capped groups, has been synthesized and characterized. Owing to the presence of its sterically congested terminal groups, TPVAn possesses a high glass transition temperature (155 °C) and is morphologically stable. Organic light‐emitting diodes (OLEDs) utilizing TPVAn as the emitter exhibit bright saturated‐blue emissions (Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of x = 0.14 and y = 0.12) with efficiencies as high as 5.3 % (5.3 cd A–1)—the best performance of non‐doped deep blue‐emitting OLEDs reported to date. In addition, TPVAn doped with an orange fluorophore served as an authentic host for the construction of a white‐light‐emitting device that displayed promising electroluminescent characteristics: the maximum external quantum efficiency reached 4.9 % (13.1 cd A–1) with CIE coordinates located at (0.33, 0.39).  相似文献   

3.
Three new starburst DCM (4‐(dicyanomethylene)‐2‐methyl‐6‐[4‐(dimethylaminostyryl)‐4H‐pyran]) derivatives, 4,4′,4′′‐tris[2‐(4‐dicyanomethylene‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (TDCM), 4,4′,′′‐tris[2‐(4‐(1′,3′‐indandione)‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (TIN), and 4‐methoxy‐4′,4′′‐bis[2‐(4‐(1′,3′‐indandione)‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (MBIN), have been designed and synthesized for application as red‐light emitters in organic light‐emitting diodes (OLEDs). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) reveal their extremely high glass‐transition temperatures and decomposition temperatures, as well as their low tendency to crystallize. Photoluminescence and electroluminescence measurements show that they exhibit a greatly restricted concentration‐quenching effect compared to DCM1 (4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(N,N‐dimethylamino)‐styryl]‐4H‐pyran), a simple but typical DCM‐type dye, as a result of their non‐planar, three‐dimensional structures that result from their unique propeller‐like triphenylamine electron‐donating cores. The peripheral electron‐withdrawing moieties also play a key role in the restriction of concentration quenching. That is, TIN and MBIN, bearing 1,3‐indandione acceptors, emit more efficiently than TDCM and DCM1, which have dicyanomethylene as acceptors at a high doping concentration of 10 wt.‐% in poly(9‐vinylcarbazole) (PVK) film, irrespective of whether they are photoexcited or electroexcited, though their fluorescence quantum yields in dilute solutions are much lower than that of DCM1. By way of the co‐doping approach, the electroluminescence device with the configuration indium tin oxide (ITO)/PVK:MBIN(10 wt.‐%):tris(4‐(2‐phenylethynyl)‐phenyl)amine (TPA; 30 wt.‐%) (70 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 20 nm)/tris(8‐quinolinolato) aluminum (Alq3;15 nm)/LiF (0.3 nm)/Al (150 nm) exhibits a turn‐on voltage of 5.1 V, a maximum luminance of 6971 cd m–2, a maximum efficiency of 6.14 cd A–1 (405 cd m–2), and chromaticity coordinates of (0.66,0.33). The encouraging electroluminescence performance suggests potential applications of the starburst DCM red‐light emitters in OLEDs.  相似文献   

4.
Considerable efforts have been devoted to the development of highly efficient blue light‐emitting materials. However, deep‐blue fluorescence materials that can satisfy the Commission Internationale de l'Eclairage (CIE) coordinates of (0.14, 0.08) of the National Television System Committee (NTSC) standard blue and, moreover, possess a high external quantum efficiency (EQE) over 5%, remain scarce. Here, the unusual luminescence properties of triphenylamine‐bearing 2‐(2′‐hydroxyphenyl)oxazoles ( 3a–3c ) and their applications in organic light‐emitting diodes (OLEDs) are reported as highly efficient deep‐blue emitters. The 3a ‐based device exhibits a high spectral stability and an excellent color purity with a narrow full‐width at half‐maximum of 53 nm and the CIE coordinates of (0.15, 0.08), which is very close to the NTSC standard blue. The exciton utilization of the device closes to 100%, exceeding the theoretical limit of 25% in conventional fluorescent OLEDs. Experimental data and theoretical calculations demonstrate that 3a possesses a highly hybridized local and charge‐transfer excited state character. In OLEDs, 3a exhibits a maximum luminance of 9054 cd m?2 and an EQE up to 7.1%, which is the first example of highly efficient blue OLEDs based on the sole enol‐form emission of 2‐(2′‐hydroxyphenyl)azoles.  相似文献   

5.
A new series of full hydrocarbons, namely 4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(N,N‐diphenylaniline) (DTPAFB), N,N′‐(4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(4,1‐phenylene))bis(N‐phenylnaphthalen‐1‐amine) (DNPAFB), 1,3‐bis(9‐(4‐(9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, and 1,3‐bis(9‐(4‐(3,6‐di‐tert‐butyl‐9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, featuring a highly twisted tetrahedral conformation, are designed and synthesized. Organic light‐emitting diodes (OLEDs) comprising DNPAFB and DTPAFB as hole transporting layers and tris(quinolin‐8‐yloxy)aluminum as an emitter are made either by vacuum deposition or by solution processing, and show much higher maximum efficiencies than the commonly used N,N′‐di(naphthalen‐1‐yl)‐N,N′‐diphenylbiphenyl‐4,4′‐diamine device (3.6 cd A?1) of 7.0 cd A?1 and 6.9 cd A?1, respectively. In addition, the solution processed blue phosphorescent OLEDs employing the synthesized materials as hosts and iridium (III) bis[(4,6‐di‐fluorophenyl)‐pyridinato‐N, C2] picolinate (FIrpic) phosphor as an emitter present exciting results. For example, the DTPAFB device exhibits a brightness of 47 902 cd m?2, a maximum luminescent efficiency of 24.3 cd A?1, and a power efficiency of 13.0 lm W?1. These results show that the devices are among the best solution processable blue phosphorescent OLEDs based on small molecules. Moreover, a new approach to constructing solution processable small molecules is proposed based on rigid and bulky fluorene and carbazole moieties combined in a highly twisted configuration, resulting in excellent solubility as well as chemical miscibility, without the need to introduce any solubilizing group such as an alkyl or alkoxy chain.  相似文献   

6.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   

7.
A novel yellowish‐green triplet emitter, bis(5‐(trifluoromethyl)‐2‐p‐tolylpyridine) (acetylacetonate)iridium(III) (1), was conveniently synthesized and used in the fabrication of both monochromatic and white organic light‐emitting diodes (WOLEDs). At the optimal doping concentration, monochromatic devices based on 1 exhibit a high efficiency of 63 cd A?1 (16.3% and 36.6 lm W?1) at a luminance of 100 cd m?2. By combining 1 with a phosphorescent sky‐blue emitter, bis(3,5‐difluoro‐2‐(2‐pyridyl)phenyl)‐(2‐carboxypyridyl)iridium(III) (FIrPic), and a red emitter, bis(2‐benzo[b]thiophen‐2‐yl‐pyridine)(acetylacetonate)iridium(III) (Ir(btp)2(acac)), the resulting electrophosphorescent WOLEDs show three evenly separated main peaks and give a high efficiency of 34.2 cd A?1 (13.2% and 18.5 lm W?1) at a luminance of 100 cd m?2. When 1 is mixed with a deep‐blue fluorescent emitter, 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl (BCzVBi), and Ir(btp)2(acac), the resulting hybrid WOLEDs demonstrate a high color‐rendering index of 91.2 and CIE coordinates of (0.32, 0.34). The efficient and highly color‐pure WOLEDs based on 1 with evenly separated red, green, blue peaks and a high color‐rendering index outperform those of the state‐of‐the‐art emitter, fac‐tris(2‐phenylpyridine)iridium(III) (Ir(ppy)3), and are ideal candidates for display and lighting applications.  相似文献   

8.
Novel fluorene‐based blue‐light‐emitting copolymers with an ultraviolet‐blue‐light (UV‐blue‐light) emitting host and a blue‐light emitting component, 4‐N,N‐diphenylaminostilbene (DPS) have been designed and synthesized by using the palladium‐ catalyzed Suzuki coupling reaction. It was found that both copolymers poly [2,7‐(9,9‐dioctylfluorene)‐alt‐1,3‐(5‐carbazolphenylene)] (PFCz) DPS1 and PFCz‐DPS1‐OXD show pure blue‐light emission even with only 1 % DPS units because of the efficient energy transfer from the UV‐blue‐light emitting PFCz segments to the blue‐light‐emitting DPS units. Moreover, because of the efficient energy transfer/charge trapping in these copolymers, PFCz‐DPS1 and PFCz‐DPS1‐OXD show excellent device performance with a very stable pure blue‐light emission. By using a neutral surfactant poly[9,9‐bis(6'‐(diethanolamino)hexyl)‐fluorene] (PFN‐OH) as the electron injection layer, the device based on PFCz‐DPS1‐OXD5 with the configuration of ITO/PEDOT:PSS/PVK/polymer/PFN‐OH/Al showed a maximum quantum efficiency of 2.83 % and a maximum luminous efficiency of 2.50 cd A–1. Its CIE 1931 chromaticity coordinates of (0.156, 0.080) match very well with the NTSC standard blue pixel coordinates of (0.14, 0.08). These results indicate that this kind of dopant/host copolymer could be a promising candidate for blue‐light‐emitting polymers with high efficiency, good color purity, and excellent color stability.  相似文献   

9.
A new series of blue‐light‐emitting fluorene derivatives have been synthesized and characterized. The fluorene derivatives have high fluorescence yields, good thermal stability, and high glass‐transition temperatures in the range 145–193 °C. Organic light‐emitting diodes (OLEDs) fabricated using the fluorene derivatives as the host emitter show high efficiency (up to 5.3 cd A–1 and 3.0 lm W–1) and bright blue‐light emission (Commission Internationale de L'Eclairage (CIE) coordinates of x = 0.16, y = 0.22). The performance of the non‐doped fluorene‐based devices is among the best fluorescent blue‐light‐emitting OLEDs. The good performance of the present blue OLEDs is considered to derive from: 1) appropriate energy levels of the fluorene derivatives for good carrier injection; 2) good carrier‐transporting properties; and 3) high fluorescence efficiency of the fluorene derivatives. These merits are discussed in terms of the molecular structures.  相似文献   

10.
Organic light‐emitting diodes (OLEDs) are increasingly used in displays replacing traditional flat panel displays; e.g., liquid crystal displays. Especially, the paradigm shifts in displays from rigid to flexible types accelerated the market change from liquid crystal displays to OLEDs. However, some critical issues must be resolved for expansion of OLED use, of which blue device performance is one of the most important. Therefore, recent OLED material development has focused on the design, synthesis and application of high‐efficiency and long‐life blue emitters. Well‐known blue fluorescent emitters have been modified to improve their efficiency and lifetime, and blue phosphorescent emitters are being investigated to overcome the lifetime issue. Recently, thermally activated delayed fluorescent emitters have received attention due to the potential of high‐efficiency and long‐living emitters. Therefore, it is timely to review the recent progress and future prospects of high‐efficiency blue emitters. In this feature article, we summarize recent developments in blue fluorescent, phosphorescent and thermally activated delayed fluorescent emitters, and suggest key issues for each emitter and future development strategies.  相似文献   

11.
Deep‐blue fluorescent compounds are particularly important in organic light‐emitting devices (OLEDs). A donor–accepotor (DA)‐type blue‐emitting compound, 1‐(10‐(4‐methoxyphenyl)anthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)benzene ( BD3 ), is synthesized, and for comparison, a nonDA‐type compound, 1,4‐bis(10‐phenylanthracene‐9‐yl)benzene ( BD1 ) and a weak DA‐type compound, 1‐(10‐phenylanthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)‐benzene ( BD2 ), are also synthesized. The twisted conformations of the two anthracene units in the compounds, confirmed by single crystal X‐ray analysis, effectively prevent π‐conjugation, and the compound shows deep‐blue photoluminescence (PL) with a high PL quantum efficiency, almost independent of the solvent polarity, resulting from the absence of an intramolecular charge transfer state. The DA‐type molecule BD3 in a non‐doped device exhibits a maximum external quantum efficiency (EQE) of 4.2% with a slight roll‐off, indicating good charge balance due to the DA‐type molecular design. In the doped device with 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP) host, the BD3 exhibits higher EQE than 10% with Commission International de L'Eclairge (CIE) coordinates of (0.15, 0.06) and a narrow full‐width at half‐maximum of 45 nm, which is close to the CIE of the high definition television standard blue.  相似文献   

12.
Novel deep‐blue‐light‐emitting diphenylamino and triphenylamino end‐capped oligofluorenes were synthesized by double palladium‐catalyzed Suzuki cross‐coupling of dibromo‐oligofluorene with the corresponding boronic acid as a key step. These oligofluorenes exhibit deep‐blue emission (λemmax = 429–432 nm), low and reversible electrochemical oxidation (highest occupied molecular orbital = 5.15–5.20 eV), high fluorescence quantum yield (ΦFL = 0.61–0.93), and good thermal properties (glass‐transition temperature, Tg = 99–195 °C and decomposition temperature, Tdec > 450 °C). Remarkably, saturated deep‐blue organic light‐emitting diodes, made from these oligofluorenes as dopant emitters, have been achieved with excellent performance and maximum efficiencies up to 2.9 cd A–1 at 2 mA cm–2 (external quantum efficiency of 4.1 %) and with Commission Internationale de l'Éclairage (x,y) coordinates of (0.152,0.08), which is very close to the National Television System Committee standard blue.  相似文献   

13.
A series of orange‐red to red phosphorescent heteroleptic CuI complexes (the first ligand: 2,2′‐biquinoline (bq), 4,4′‐diphenyl‐2,2′‐biquinoline (dpbq) or 3,3′‐methylen‐4,4′‐diphenyl‐2,2′‐biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2‐(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline‐type ligands, complexes [Cu(mdpbq)(PPh3)2](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N‐(4‐(carbazol‐9‐yl)phenyl)‐3,6‐bis(carbazol‐9‐yl) carbazole (TCCz), phosphorescent organic light‐emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A–1 with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear CuI complexes with red emission.  相似文献   

14.
The aggregation‐induced emission (AIE) phenomenon is important in organic light‐emitting diodes (OLEDs), for it can potentially solve the aggregation‐caused quenching problem. However, the performance of AIE fluorophor‐based OLEDs (AIE OLEDs) is unsatisfactory, particularly for deep‐blue devices (CIEy < 0.15). Here, by enhancing the device engineering, a deep‐blue AIE OLED exhibits low voltage (i.e., 2.75 V at 1 cd m?2), high luminance (17 721 cd m?2), high efficiency (4.3 lm W?1), and low efficiency roll‐off (3.6 lm W?1 at 1000 cd m?2), which is the best deep‐blue AIE OLED. Then, blue AIE fluorophors, for the first time, have been demonstrated to achieve high‐performance hybrid white OLEDs (WOLEDs). The two‐color WOLEDs exhibit i) stable colors and the highest efficiency among pure‐white hybrid WOLEDs (32.0 lm W?1); ii) stable colors, high efficiency, and very low efficiency roll‐off; or iii) unprecedented efficiencies at high luminances (i.e., 70.2 cd A?1, 43.4 lm W?1 at 10 000 cd m?2). Moreover, a three‐color WOLED exhibits wide correlated color temperatures (10 690–2328 K), which is the first hybrid WOLED showing sunlight‐style emission. These findings will open a novel concept that blue AIE fluorophors are promising candidates to develop high‐performance hybrid WOLEDs, which have a bright prospect for the future displays and lightings.  相似文献   

15.
Aggregation‐induced emission (AIE) materials are highly attractive because of their excellent properties of high efficiency emission in nondoped organic light‐emitting diodes (OLEDs). Therefore, a deep understanding of the working mechanisms, further improving the electroluminescence (EL) efficiency of the resulting AIE‐based OLEDs, is necessary. Herein, the conversion process from higher energy triplet state (T2) to the lowest singlet state (SS1) is found in OLEDs based on a blue AIE material, 4′‐(4‐(diphenylamino)phenyl)‐5′‐phenyl‐[1,1′:2′,1′′‐terphenyl]‐4‐carbonitrile (TPB‐AC), obviously relating to the device efficiency, by magneto‐EL (MEL) measurements. A special line shape with rise at low field and reduction at high field is observed. The phenomenon is further clarified by theoretical calculations, temperature‐dependent MELs, and transient photoluminescence emission properties. On the basis of the T2‐S1 conversion process, the EL performances of the blue OLEDs based on TPB‐AC are further enhanced by introducing a phosphorescence doping emitter in the emitting layer, which effectively regulates the excitons on TPB‐AC molecules. The maximum external quantum efficiency (EQE) reaches 7.93% and the EQE keeps 7.57% at the luminance of 1000 cd m?2. This work establishes a physical insight for designing high‐performance AIE materials and devices in the future.  相似文献   

16.
A relatively high‐efficiency, fluorescent pure‐white organic light‐emitting diode was fabricated using a polysilicic acid (PSA) nanodot‐embedded polymeric hole‐transporting layer (HTL). The diode employed a mixed host in the single emissive layer, which comprised 0.5 wt % yellow 5,6,11,12‐tetra‐phenylnaphthacene doped in the mixed host of 50 % 2‐(N,N‐diphenyl‐amino)‐6‐[4‐(N,N‐diphenylamino)styryl]naphthalene and 50 % N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,10‐biphenyl‐4‐4′‐diamine. By incorporating 7 wt % 3 nm PSA nanodot into the HTL of poly(3,4‐ethylene‐dioxythiophene)‐poly‐(styrenesulfonate), the efficiency at 100 cd m–2 was increased from 13.5 lm W–1 (14.7 cd A–1; EQE: 7.2 %) to 17.1 lm W–1 (17.6 cd A–1; EQE: 8.3 %). The marked efficiency improvement may be attributed to the introduction of the PSA nanodot, leading to a better carrier‐injection‐balance.  相似文献   

17.
Strong intermolecular interactions usually result in decreases in solubility and fluorescence efficiency of organic molecules. Therefore, amorphous materials are highly pursued when designing solution‐processable, electroluminescent organic molecules. In this paper, a non‐planar binaphthyl moiety is presented as a way of reducing intermolecular interactions and four binaphthyl‐containing molecules ( BNCM s): green‐emitting BBB and TBT as well as red‐emitting BTBTB and TBBBT , are designed and synthesized. The photophysical and electrochemical properties of the molecules are systematically investigated and it is found that TBT , TBBBT , and BTBTB solutions show high photoluminescence (PL) quantum efficiencies of 0.41, 0.54, and 0.48, respectively. Based on the good solubility and amorphous film‐forming ability of the synthesized BNCM s, double‐layer structured organic light‐emitting diodes (OLEDs) with BNCM s as emitting layer and poly(N‐vinylcarbazole) (PVK) or a blend of poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] and PVK as hole‐transporting layer are fabricated by a simple solution spin‐coating procedure. Amongst those, the BTBTB based OLED, for example, reaches a high maximum luminance of 8315 cd · m−2 and a maximum luminous efficiency of 1.95 cd · A−1 at a low turn‐on voltage of 2.2 V. This is one of the best performances of a spin‐coated OLED reported so far. In addition, by doping the green and red BNCM s into a blue‐emitting host material poly(9,9‐dioctylfluorene‐2,7‐diyl) high performance white light‐emitting diodes with pure white light emission and a maximum luminance of 4000 cd · m−2 are realized.  相似文献   

18.
Non‐crystalline anthracene‐containing binaphthol chromophores were synthesized, characterized, and used in the fabrication of organic light‐emitting diodes (OLEDs). Specifically, the target molecules were 2,2′‐dihexyloxy‐1,1′‐binaphthol‐6,6′‐bisanthracene ( BA1 ) and 2,2′‐dimethoxyy‐1,1′‐binaphthol‐6,6′‐bisanthracene ( BA2 ). Molecules BA1 and BA2 provide amorphous solids, as determined by their glass‐transition temperature (Tg) measured by differential scanning calorimetry (DSC). Efficient multilayer OLEDs containing BA1 and BA2 were fabricated by evaporation techniques. Differences in the electroluminescence frequencies of these devices suggests that the degree of alkoxide substitution controls the mobility within the binaphthol material, and therefore the recombination region in the device. Compound BA2 can also be used to dope CBP ((4,4′‐bis(carbazol‐9‐yl)biphenyl)) in the fabrication of highly efficient OLEDs.  相似文献   

19.
Organic light‐emitting diodes based on intramolecular‐charge‐transfer emission from two related donor–acceptor (D–A) molecules, 3,7‐[bis(4‐phenyl‐2‐quinolyl)]‐10‐methylphenothiazine (BPQ‐MPT) and 3,6‐[bis(4‐phenyl‐2‐quinolyl)]‐9‐methylcarbazole (BPQ‐MCZ), were found to have electroluminescence (EL) efficiencies and device brightnesses that differ by orders of magnitude. High brightness (> 40 000 cd m–2) and high efficiency (21.9 cd A–1, 10.8 lm W–1, 5.78 % external quantum efficiency (EQE) at 1140 cd m–2) green EL was achieved from the BPQ‐MPT emitter, which has its highest occupied molecular orbital (HOMO) level at 5.09 eV and a nonplanar geometry. In contrast, diodes with much lower brightness (2290 cd m–2) and efficiency (1.4 cd A–1, 0.66 lm W–1, 1.7 % EQE at 405 cd m–2) were obtained from the BPQ‐MCZ emitter, which has its HOMO level at 5.75 eV and exhibits a planar geometry. Compared to BPQ‐MCZ, the higher‐lying HOMO level of BPQ‐MPT facilitates more efficient hole injection/transport and a higher charge‐recombination rate, while its nonplanar geometry ensures diode color purity. White EL was observed from BPQ‐MCZ diodes owing to a blue intramolecular charge‐transfer emission and a yellow–orange intermolecular excimer emission, enabled by the planar molecular geometry. These results demonstrate that high‐performance light‐emitting devices can be achieved from intramolecular charge‐transfer emission, while highlighting the critical roles of the electron‐donor strength and the molecular geometry of D–A molecules.  相似文献   

20.
The synthesis and characterization of two new phosphorescent cationic iridium(III) cyclometalated diimine complexes with formula [Ir( L )2(N‐N)]+(PF6) ( HL = (9,9‐diethyl‐7‐pyridinylfluoren‐2‐yl)diphenylamine); N‐N = 4,4′‐dimethyl‐2,2′‐bipyridine ( 1 ), 4,7‐dimethyl‐1,10‐phenanthroline ( 2 )) are reported. Both complexes are coordinated by cyclometalated ligands consisting of hole‐transporting diphenylamino (DPA)‐ and fluorene‐based 2‐phenylpyridine moieties. Structural information on these heteroleptic complexes has been obtained by using an X‐ray diffraction study of complex 2 . Complexes 1 and 2 are morphologically and thermally stable ionic solids and are good yellow phosphors at room temperature with relatively short lifetimes in both solution and solid phases. These robust iridium complexes can be thermally vacuum‐sublimed and used as phosphorescent dyes for the fabrication of high‐efficiency organic light‐emitting diodes (OLEDs). These devices doped with 5 wt % 1 can produce efficient electrophosphorescence with a maximum brightness of up to 15 610 cd m–2 and a peak external quantum efficiency of ca. 7 % photons per electron that corresponds to a luminance efficiency of ca. 20 cd A–1 and a power efficiency of ca. 19 lm W–1. These results show that charged iridium(III) materials are useful alternative electrophosphors for use in evaporated devices in order to realize highly efficient doped OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号