首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper considers a novel doping profile for Schottky barrier mixer diodes called the Mott barrier. The structure consists of a metal-semiconductor junction in which the semiconductor's epitaxial layer is very lightly doped and thin enough so that it remains depleted even under substantial forward bias. It has been proposed that Mott barrier diodes will generate less noise and have lower series resistance-junction capacitance products than standard Schottky diodes, thus increasing the sensitivity and cut-off frequency of heterodyne receivers. In this paper, the band structure and electron transport properties of the Mott diode are evaluated. This analysis shows that the Mott diode actually will have a large series resistance-junction capacitance product and excessive hot electron noise, making it a poor candidate for high-frequency applications. Experimental results are presented which substantiate these conclusions.  相似文献   

2.
3.
周静涛  杨成樾  葛霁  金智 《半导体学报》2013,34(6):064003-4
Based on characteristics such as low barrier and high electron mobility of lattice matched In0.53Ga0.47 As layer,InP-based Schottky barrier diodes(SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones.Planar InP-based SBDs have been developed in this paper.Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved.The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32Ωand 9.1 fF,respectively.They are highly consistent with the calculated values.The performances of the InP-based SBDs in this work,such as low noise and low loss,are promising for applications in the terahertz mixer,multiplier and detector circuits.  相似文献   

4.
GaAs Schottky barrier diodes with near-ideal electrical and noise characteristics for mixing applications in the terahertz frequency range are described. The conventional formulas describing these characteristics are valid only in a limited forward bias range, corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. Therefore, generalized analytical expressions for the I-V and C-V characteristics of the metal-semiconductor junction in the full bias range are given. A new numerical diode model is presented which takes into account not only the phenomena occurring at the junction, such as current dependent recombination and drift/diffusion velocities, but also the variations of electron mobility and electron temperature in the undepleted epi-layer. A diode fabrication process based on the electrolytic pulse etching of GaAs in combination with an in situ platinum plating for the formation of the Schottky contacts is described. Schottky barrier diodes with a diameter of 1 μm fabricated by this process have already shown excellent results in a 650-GHz waveguide mixer at room temperature  相似文献   

5.
Current-voltage (I–V) characteristics of n- and p-type 6H−SiC Schottky diodes are compared in a temperature range of room temperature to 400°C. While the room temperature I–V characteristics of the n-type Schottky diode after turn-on is more or less linear up to ∼100 A/cm2, the I–V characteristics of the p-type Schottky diode shows a non-linear behavior even after turn-on, indicating a variation in the on-state resistance with increase in forward current. For the first time it is shown that at high current densities (>125 A/cm2) the forward voltage drop across p-type Schottky diodes is lower than that across n-type Schottky diodes on 6H−SiC. High temperature measurements indicate that while the on-state resistance of n-type Schottky diodes increases with increase in temperature, the on-state resistance of p-type Schottky diodes decreases with increase in temperature up to ∼330 K.  相似文献   

6.
A detailed theoretical and experimental study of the heterodyne performance of a quasioptical Schottky diode detector is presented. The experimental results have been obtained by mixing the radiation from a FIR laser with the output of a 67–73 GHz Klystron. The heterodyne signal variation versus various parameters and its relation to the special case of two lasers mixing are described. The mixer characteristics are a NEP value of 2×10?19W/Hz and a detector bandwidth of at least 9 GHz. Experimental evidence of harmonics generation of submillimetric frequencies at the diode junction is also presented.  相似文献   

7.
In this study, the current-voltage characteristics of the AlCdO/unpolished p-type Si and AlCdO/polished p-type Si Schottky diodes with and without light illumination were examined. It is found that the Schottky barrier height (the series resistance) of the AlCdO/unpolished p-type Si Schottky diode is higher (lower) than that of the AlCdO/polished p-type Si Schottky diode. The power conversion efficiency of the AlCdO/p-type Si devices in the light (AM 1.5 G, 100 mW/cm2) was improved by increasing built-in potential at the AlCdO/p-type Si interfaces and reducing the device series resistance and surface reflectivity. It is shown that the device surface roughness plays an essential role in improving the device performance.  相似文献   

8.
A novel scheme to measure the VSWR and the "phase variation" of mixer diodes at high RF power levels is described. This experimental test system provides a nondestructive way of determining the power-handling capability of a mixer diode and also serves as an important tool in improving the burnout performance of point contact and Schottky barrier diodes.  相似文献   

9.
The paper describes a 3mm cryogenic mixer receiver using high doping density (“room-temperature”) Schottky diodes. The measured equivalent noise temperature Teq of the diodes is 109 K at 20 K, which is much higher than the Teq of the low doping density (“cryogenic”) diodes. In spite of this, the double-sideband (DSB) noise temperature of the cryogenic receiver developed is 55 K at 110 GHz, owing to the low conversion loss of the mixer and ultra-low noise of the PHEMT IF amplifier. This is the lowest noise temperature ever reported for a Schottky diode mixer receiver. The results obtained are useful for the development of submm receivers in which high doping density Schottky diodes are used.  相似文献   

10.
Microwave measurements have been made of the equivalent circuit parameters and performance characteristics of unpackaged GaAs Schottky barrier mixer diodes. The dependence of mixer performance on series inductance, junction capacitance, and series resistance is delineated. Performance of mixer diodes in packaged and unpackaged form is compared.  相似文献   

11.
Conversion Iosses, both intrinsic and parasitic, are calculated for Schottky diode mixers in the submillimeter region, and optimum mixer performance is shown to depend strongly upon operating frequency and upon diode diameter. The implications for high-frequency diode fabrication are discussed, and a comparison is made of the expected performance of GaAs, Si, and InSb Schottky diodes at frequencies up to 5 THz.  相似文献   

12.
InP mixer diodes processed with Ag/TiW/Au Schottky diodes have exhibited a noise figure of 6.5?7.0 dB at 94 GHz. InP surface preparation is shown to be critical in diode performance. An indium-stabilised surface has resulted in a barrier height of 0.45 eV.  相似文献   

13.
Theoretical models for the generation-recombination noise and trapping noise in metal-semiconductor Schottky barrier diodes are developed. Low-frequency excess noise in Schottky barrier diodes is found to be dominated by the modulation of the barrier height φB caused by fluctuation in the charge state of traps or generation-recombination centers. This noise mechanism does not occur in p-n junctions. The bias and the temperature dependence of the generation-recombination noise is critically compared with the experimental data for forward diode current ranges from 3 to 300 µA and operating temperatures from -25° to 100°C. Trapping noise in Schottky barrier diodes is observed at low temperatures in diodes not intentionally doped with deep level impurities. The experimental results on trapping noise can be described by assuming that the trap states have a constant capture cross section and are uniformly distributed in space, as well as in energy. The surface potential at the diode periphery also has an important effect on the Schottky barrier diode noise. The best low-frequency noise behavior is found when the surface is at the flat-band condition. An accumulated surface is always associated with a large amount of low-frequency excess noise.  相似文献   

14.
The performance of a submillimeter heterodyne receiver using an HCOOH laser local oscillator and an open structure mixer with a Schottky barrier diode has been optimized for 693 GHz. Working at room temperature a single sideband (SSB) system noise temperature of 7,300 K, a mixer noise temperature of 6,100 K and a conversion loss of 12 dB has been achieved. The same receiver system has been investigated at 324 GHz using an HCOOD laser local oscillator yielding a noise temperature of 3,100 K (SSB), a mixer noise temperature of 2,400 K (SSB) and a conversion loss of 10 dB (SSB). An acousto-optical spectrometer has also been constructed, with 1024 channels and a channel-bandwidth of 250 kHz. The system NEP per channel was 2.5×10?17 W/Hz1/2 at 324 GHz and 5.0×10?17 W/Hz1/2 at 693 GHz.  相似文献   

15.
The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson-Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal-semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes, which will in turn act on the I-V characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.  相似文献   

16.
Au/n-GaN Schottky diodes with the Au electrode deposited at low temperature (LT=77K) have been studied. In comparison, the same chip of GaN epitaxial layer was also used for room temperature Schottky diodes. The low temperature Schottky diodes exhibit excellent performance. Leakage current density as low as 2.55×10−11 A·cm−2 at −2.5 V was obtained in the LT Schottky diodes. The linear region in the current-voltage curve at forward bias extends more than eight orders in current magnitude. Current-voltage-temperature measurements were carried out to study the characteristics of the LT Schottky diodes. A typical barrier height of about 1.32 eV for the LT diode, which is the highest value ever reported, was obtained. The obvious enhancement in electrical performance makes the LT processing a very promising technique for GaN device application although the detailed mechanisms for the LT Au/n-GaN Schottky diodes are still under investigation.  相似文献   

17.
GaAs metal-semiconductor FET's (MESFET) are developed for use in amplifiers at microwave frequencies. The FET has a Schottky barrier between the gate and source, operating in the same manner as a Schottky-barrier diode. If the Schottky barrier is used as a mixer, the IF signal is generated and simultaneously amplified by the FET itself. Thus a mixer with IF preamplifier can be realized. In this paper the theoretical and experimental results of a FET mixer are described. In such operations, the conversion loss in the freqnency conversion alone is large due to the high series resistance of the Schottky barrier. However, the overall FET mixer has a "conversion gain" because the IF gain of the FET is made large. The experimental conversion gain is 6 dB at the RF frequency of 10.8 GHz and the IF frequency of 1.7 GHz. The noise figure of the FET mixer is at present large (15 dB, for example), due to large conversion loss in the frequency conversion.  相似文献   

18.
The GaAs Schottky diode is predominantly used as the critical mixer element in heterodyne receivers in the frequency range from 300 GHz to several THz[1]. At operating frequencies above one THz the skin effect adds significant parasitic resistance to the diode which degrades the receiver sensitivity. A novel diode structure called the Schottky barrier membrane diode is proposed to decrease the skin effect resistance by reducing the current path between the Schottky and ohmic contacts. This is accomplished by fabricating the diode on a very thin membrane of GaAs (about 1 μm thickness). A theoretical analysis has shown that this will reduce the substrate resistance by 60% at 3 THz. This reduction in resistance corresponds to a better frequency response which will improve the device's performance as a mixer element.  相似文献   

19.
Whisker contacted GaAs Schottky barrier diodes are the standard devices for mixing and multiplier applications in the THz frequency range. This is mainly due to their minimum parasitics and mature technology. But with the decreasing size of the anode contact, which is required for operation at high frequencies (up to approx. 3 THz), the reliability and the micro-structural understanding of the Schottky barrier becomes increasingly important. This contribution presents new results concerning the reliability of Schottky diodes and the physical properties of small-area Schottky junctions, especially at low current densities. For these purposes a number of different Schottky diodes have been fabricated with different epilayer doping concentrations and anode diameters. Measured I/V characteristics show that the diode current deviates considerably from the ideal thermionic current behavior with decreasing diode diameter. This deviation shows an exponential dependence on the diode voltage and is a function of the doping concentration of the active layer. For a given doping concentration in the epi-layer and decreasing anode diameter, this phenomenon shifts the minimum of the ideality factor towards higher current densities. An explanation is given in terms of a difference of the cyrstallinity of the polycrystalline platinum films on the GaAs for decreasing SiO2 aperture size in connection with a reduced Pt mobility in the electrolyte. The reliability of Schottky barrier diodes under thermal and electrical stress has been investigated on different THz Schottky diode structures. The results show that the barrier height and the ideality factor of the fabricated structures are not affected by thermal stress. Electrical stress induced by large forward currents up to a current density of 10 kA/mm2 even leads to a slight increase of the barrier height and a reduction of the series resistance.  相似文献   

20.
Current-transport properties of Al-n-p silicon Schottky-barrier diodes have been studied both experimentally and theoretically. An analytical model for the I-V characteristic of a metal-n-p Schottky barrier diode has been developed by using an interfacial layer-thermionic-diffusion model. Assuming a Gaussian distribution for the implanted profile, the barrier-height enhancement and ideality factor have been derived analytically. Using low energy (25 KeV) arsenic implantation with the dose ranged form 8 × 1010/cm2 to 1012/cm2, Al-n-p silicon Schottky barrier diodes have been fabricated and characterized. Comparisons between the experimental measurements and the results of computer simulations have been performed and satisfactory agreements between these comparisons have been obtained. The reverse I–V characteristics of the fabricated Al-n-p silicon Schottky barrier diodes can also be well simulated by the developed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号