首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了使半导体激光器(Laser Diode,LD)输出稳定的波长,必须精确控制对其特性影响很大的工作温度。以单片机为控制核心,采用高精度的负温度系数热敏电阻(Negative Temperature Coefficient resistance,NTC)结合半导体制冷器(Thermal Electronic Cooler,TEC)的方案,对TEC的驱动采用脉宽调制(Pulse Width Modulation,PWM)方式和“H”桥式电路来实现,研制了一种对2A电流的半导体激光器进行精密温度控制的电路,控制精度可达±0.1℃。  相似文献   

2.
高温环境下高功率半导体激光器驱动电源设计   总被引:1,自引:0,他引:1  
半导体激光器驱动电源的性能直接影响着激光输出稳定性和激光器寿命。给出40℃高温环境下100w高功率光纤耦合半导体激光器模块的驱动电源设计方法,主要包括:恒流源设计、TEc双向温度控制器及相应的单片机控制器和保护电路设计等。该驱动电源实现了电流输出范围0~45A连续可调,电流控制精度优于1%;控温范围+15℃~+35℃,控温精度0.5℃。  相似文献   

3.
根据大功率、低噪声半导体泵浦光纤激光器对于激光电源的要求,通过LD工作原理和输出特性分析,设计一种以ADuc842高速单片机为主控芯片的LD驱动控制电路。设计采用自动电流控制(ACC)和自动温度控制(ATC)的方式,实现LD的恒流源驱动和恒温控制。设计还引用了双限流电路、浪涌吸收电路及慢启动电路等一系列保护电路,提高了LD的抗冲击能力和工作稳定性。实验结果表明,电流输出稳定度优于0.5%,温度稳定度达到±0.1℃。  相似文献   

4.
掺镱双包层光纤光栅激光器输出特性的研究   总被引:5,自引:2,他引:3       下载免费PDF全文
通过对泵浦源LD的温度控制,研究了不同温度对泵浦源波长以及光纤激光器输出特性的影响。利用熔接在掺镱双包层光纤两端的光纤光栅作为光纤激光器的谐振腔,采用锥度光纤耦合的方法实现了5.1W的单模激光输出,输出波长1100nm,最大转换效率63%。  相似文献   

5.
王硕  王国臣  高伟 《半导体光电》2020,41(5):711-716
半导体激光器的输出性能直接决定了光纤电流互感器的测量精度和长期运行稳定性。为提高光纤电流互感器的测量精度与稳定性,设计了一种高精度半导体激光器数字驱动电路。以STM32微控制器为控制核心,利用高精度电流源芯片ADN8810实现驱动电流的精密控制,同时采用集成温控芯片MAX1978通过控制半导体制冷片的工作电流实现对激光器温度的精确控制。经实验测试,其输出电流稳定度为0.028%,温度控制稳定度为0.18%,激光器输出光功率稳定度达到0.06%,输出波长稳定度为0.05pm。该设计能够满足光纤电流互感器对光源输出性能的要求。  相似文献   

6.
为了研究铷蒸气激光中的线宽匹配技术,基于半导体制冷片(TEC)的温度控制技术设计了窄线宽可调谐单管半导体激光器.利用半导体激光器的温度漂移特性,使LD的激光光谱中心波长在780 nm附近(工作温度-6℃),采用体布拉格光栅(VBG)外腔结构改善了LD的激光光谱,获得了功率1.448 W线宽0.13 nm的激光输出.通过调节VBG的温度,LD波长可从779.28 nm调谐至780.13 nm,调谐范围达850 pm.  相似文献   

7.
柯文雄  江毅 《半导体光电》2020,41(4):500-504
低成本、小型化的波长扫描半导体激光器在光纤传感系统中有着重要作用。设计了一种可进行温度调谐的半导体激光光源驱动电路。该电路系统以ARM单片机作为控制中心,利用热敏电阻采样激光工作温度,并通过半导体制冷器(TEC)进行温度调节,使得激光器能够根据温度调谐实现波长扫描;同时通过背向光探测器(PD)采样激光输出功率,并通过改变半导体激光驱动电流实现对激光输出功率的控制,使得激光器在温度变化时输出光功率保持稳定。实验结果表明,该电路能够长时间可靠地工作,激光器能够实现的最大波长调谐范围为5nm,且输出光功率在整个波长扫描过程中保持稳定。  相似文献   

8.
一种双极性高精度半导体激光器温度控制系统   总被引:1,自引:1,他引:0  
温度是影响半导体激光器(LD)寿命和输出特性的重要因素之一。为保证LD输出稳定的激光模式和功率,采用以ADC和DAC集成的微处理器芯片C8051F350和具有双极性输出电流的TEC驱动芯片MAX1968为控制核心,以积分分离和变速积分增量式相结合的数字PID算法为运算程序的自动温度控制系统(ATC)控制TEC驱动电流的方向和大小,实现对LD的加热或制冷,使其工作在恒定温度。实验证明,应用该系统,LD在0℃~40℃环境温度范围内能很快稳定在设定温度,且其不确定度为±0.03℃。  相似文献   

9.
光纤放大器抽运模块LD驱动电流源设计   总被引:1,自引:1,他引:0  
陶宁  姜海明  肖峻  谢康  王亚非  李雷 《激光技术》2010,34(6):819-822
为了实现光纤放大器的抽运模块驱动电源精度高、纹波系数小、转换效率高并具有一定保护功能,设计了半导体激光器的驱动电流源。该电流源由驱动、串口控制等模块组成。采用基于LM2676的开关转换方式,构建了转换效率较高的恒流源系统,并应用于LD驱动。经测试,通过LD的电流最大为2.5A,输出电流精度达到0.1%,转换效率可达85%以上,LC滤波电路使输出电流纹波减少至0.5mA;具有串口通信电流源控制系统,能够实现对驱动电流值的远程读取与设置。结果表明,该电流源达到理论设计要求,可应用于光纤放大器抽运模块。  相似文献   

10.
张龙  陈建生  高静  檀慧明  武晓东 《红外与激光工程》2018,47(10):1005003-1005003(7)
为了解决大功率半导体激光器的输出波长和功率的稳定性问题,设计了一套大功率激光器恒流驱动电源及温控系统。利用深度负反馈电路实现对激光器驱动电流的恒流控制,采用硬件比例-积分(Proportional-Integral,PI)温控电路结合恒流驱动,控制半导体制冷器(Thermoelectric Cooler,TEC)的工作电流,实现激光器工作温度的精确控制。所设计的驱动电源可实现输出电流0~12.5 A连续可调,同时具有电流检测、过流保护、晶体管-晶体管逻辑(Transistor-Transistor Logic,TTL)信号调制等功能。所设计的温控系统的控制精度可达到0.05℃,同时设定温度连续可调,温度可实时监测。实验结果表明该设计能够保证稳定的电流输出和温度控制,满足大功率激光器的使用要求。  相似文献   

11.
作为激光器重要组成部分的激光器电源,其输出不仅要求大电流、低电压、高稳定度,而且工作脉冲频率较高(可达50 MHz)。针对此目标,设计了一种个将5 V、4 A转换为2.4 V、3.3 A恒流输出的激光器电源输出转换电路,为激光器提供稳定的电流,并通过TTL控制电路使输出频率可调。除此之外,笔者本文还讨论了一种半导体激光温度控制电路的设计方案,采用高集成、高性价比和高效率开关型驱动芯片MAX1968实现热电致冷驱动电路,能够实时监视和控制激光器温度,以稳定激光器的输出功率和波长。  相似文献   

12.
文章推导出PCF压力传感器检测基本原理,设计出PCF压力传感器典型系统结构,分析了PCF压力传感器对光源的特殊性能要求,选择半导体激光器(LD)作为传感器系统光源。提出LD工作稳定性整体控制设计方案,采用路分析方法给出LD中噪声控制模块、功率控制模块、温度控制制模块和波长控制系统。在LD中通过噪声、功率和温度控制等能够有效保障LD工作稳定性,保障PCF压力传感器系统对压力测量的精确性。  相似文献   

13.
在利用可调谐半导体激光器吸收光谱(TDLAS)技术对气体浓度进行检测时,检测系统对激光器的温度稳定性要求较高。提出了一种基于max1978的VCSEL激光器自动温度控制(ATC)方案,建立了热电制冷器(TEC)的数学模型,对TEC的热惯性进行了测试,以热惯性测试结果为基础对比例积分微分控制(PID)电路参数进行了整定,设计出了具有较高控制性能的温度控制电路。电路采用闭环负反馈自动控制方案,采用PID电路产生控制信号,驱动TEC,实现了对VCSEL激光器工作温度的有效控制。实验测试结果表明,电路的温度控制精度达到+0.03℃,较好地实现了激光器工作温度稳定性的控制。  相似文献   

14.
阐述了半导体热电制冷器(TEC)的工作原理,分析了线性驱动和脉冲宽度调制(PWM)驱动TEC的原理以及各自的特点,对Linear公司的热电制冷器控制芯片LTC1923作了介绍,讨论了基于LTC1923的半导体分布反馈式(DFB)激光器自动温度控制电路,并对实验和实际应用的结果进行了分析,给出了实测数据和波形。实验结果表明激光器中心波长变化范围为±5pm,对应管芯温度变化±0.05℃,说明温控电路可以有效地对激光器的工作温度进行控制。  相似文献   

15.
针对传统半导体激光器冷却系统体积大、温控精度不高的特点,采用ARM9核心的S3C2410A微处理器配合单总线数字温度传感芯片DS18820,在嵌入式Linux操作系统中采用模糊自整定PID算法对半导体制冷器进行精确控制,实现对半导体激光器中冷却水的恒温控制,保证半导体激光器的稳定工作.采用软件延时的方法,解决了半导体制冷系统在加热和制冷切换过快时制冷器易碎裂的问题.该系统体积小、响应快、使用方便,具有较高的可靠性和稳定性.且可使用直流电源供电.适于车载或机载使用.试验结果验证:该系统可在室温为0~35℃的环境中实现控温范围10~30℃,控温精度±0.1℃.  相似文献   

16.
半导体激光器驱动电源的性能是影响其工作特性的重要因素,提高LD驱动电源性能的研究具有重要的意义。提出了一种新型的基于FPGA技术的半导体激光器驱动电源设计方案,以FPGA为控制核心,LD驱动电源的AD/DA转换、温度PID控制、恒定电流驱动、LD保护及人机交互等功能模块电路均在FPGA的控制下协调工作。设计并实现了基于FPGA的LD温度控制与电流驱动电路,测试结果表明当LD的工作温度在20-30℃时,其工作温度稳定度优于±0.03℃,驱动电流的恒定度达到±0.1%。  相似文献   

17.
为了研制一种用于抽运单频单块激光器的LD电源,采用恒流电路对LD进行驱动,并应用软件监测的方法对电流的长期稳定性和故障进行监测和调节.运用模糊和比例-积分-微分(PID)混合控制温度调节算法,具有超调小和控制精度高的优点,并对基本PID算法进行了简化.使用了一个分段取值的参数,在控制范围内使运算速度提高10倍以上.实验结果表明,实现LD驱动电流的稳定度优于2 mA,LD温度长期波动小于0.1℃,激光输出的频率在一定温度范围内连续可调.  相似文献   

18.
杨家桂 《激光技术》2007,31(4):445-448
为了研究热电致冷器模块对半导体激光器温度控制系统稳定性的影响,采用模拟比例-积分-微分(PID)网络作为系统的控制器,通过对PID控制网络的调整,优化了热电致冷模块的响应,并根据调整后的PID控制网络及各组成部分的特性建立系统的数学模型,分析了系统对单位阶跃输入的稳态误差和稳定性。经仿真比较,结果表明,优化后的系统具有很好的瞬态特性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号