首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
退火处理对ITO表面特性及有机发光器件性能的影响   总被引:4,自引:4,他引:0  
为了改善有机发光器件(OLEDs)的性能,在0~600℃不同温度下对ITO透明导电玻璃进行了退火处理。SEM观察到随退火温度的升高,ITO表面粗糙度增加;四探针电阻测试结果显示,在300℃以上温度退火后ITO表面电阻率有明显增加。用退火前后的ITO玻璃作为阳极制备了OLEDs,器件结构为ITO/TPD/Alq3/Al,比较器件的电流密度-电压特性曲线测试结果表明,ITO薄膜的热处理温度对OLEDs性能有显著的影响。  相似文献   

2.
分别制备了4种有机电致发光器件(OLEDs):ITO/Alq3/Al;ITO/Alq3/LiF(1.0nm):Al;ITO/Alq3/LiF(1.5nm)∶Al;ITO/Alq3/LiF∶(2.0nm)Al。研究了LiF的引入对金属电极与发光层界面的影响以及各种不同的界面态对器件发光性能的影响。研究结果表明:适当的LiF厚度的引入不仅可以改善器件的界面特性,而且可以提高器件的发光亮度及发光效率。  相似文献   

3.
采用聚乙烯基咔唑(PVK)作为空穴传输层,PF-BT15作为发光层,制备了结构为ITO/PEDOT/PVK(060 nm)/PF-BT15/Cs2CO3/Al的聚合物发光二极管。通过测试器件的电流密度-电压-发光亮度特性,研究了空穴传输层厚度对聚合物发光二级管器件性能的影响,优化了器件功能层的厚度匹配。实验结构表明,聚合物发光二极管的光电性能与空穴传输层的厚度密切相关,当转速约为2 000 r/s,浓度约为1%,膜厚约为40 nm时,其器件光电性能有较大的提高。  相似文献   

4.
张靖磊  仲飞  刘彭义   《电子器件》2008,31(1):40-43
用磁控溅射方法制备的ZnS薄膜作为有机发光器件(OLEDs)的空穴缓冲层,使典型结构的 OLEDs(ITO/TPD/Alq/LiF/Al) 的发光性能得到改善.ZnS 缓冲层厚度对器件性能影响的实验结果表明,当ZnS缓冲层厚度为 5 nm 时,器件的亮度增加了2倍多;当ZnS缓冲层厚度为5、10 nm时,器件的发光电流效率增加40%.研究结果表明 ZnS 薄膜是一种好的缓冲层材料,它能够提高器件的发光效率,改善器件的稳定性.  相似文献   

5.
以ITO玻璃基片为衬底,8-羟基喹啉锂(Liq)掺杂红荧烯 (Rubrene)作为单一发光层,制备结构为ITO/PTV:TPD/Liq:Rubrene/Alq3/Al的白色有机电致发光器件(OLED),其量度达到3 120 cd/m2.对4种不同掺杂浓度器件进行比较,分析了掺杂剂对器件发光亮度的影响,并对上述器件的发光和电学性能进行了研究和探讨.  相似文献   

6.
一种新型金属配合物有机电致发光器件   总被引:10,自引:9,他引:1  
以一种新型的含蒽荧光团双磷配体螯合Ag(L1Ag)为发光材料,制成有机电致发光二极管(OLEDs),结构分别为:ITO/L1Ag/Al;ITO/聚乙稀咔唑(PVK):L1Ag/Al。成功实现了明亮稳定的电致发光(EL),在534nm处均匀稳定地发出明亮的绿光。通过在L1Ag中混入空穴传输层材料聚乙烯咔唑(PVK),显著地提高了器件的综合发光性能,其光电流和量子效率分别提高了4.5倍和4.7倍,光电流达1.5×10-7A,量子效率为1.83×10-3%。对这种新型金属螯合物OLEDs的发光和电学性能进行了深入的研究。  相似文献   

7.
ITO透明导电薄膜的制备及光电特性研究   总被引:15,自引:7,他引:8  
以氯化铟和氯化锡为前驱物,采用溶胶 凝胶法在玻璃基片上制备了ITO薄膜。研究了掺锡浓度、热处理温度和热处理时间等工艺条件对ITO薄膜光电特性的影响。制备的ITO薄膜的方阻为300Ω/□,可见光平均透过率为80%,电阻率为4×10-3Ω·cm,其光电特性已达到了TN LCD透明电极的要求。  相似文献   

8.
为了探讨DMQA掺杂浓度对有机发光器件(OLEDs)光电性能的影响,采用器件结构ITO/PEDOT:PSS/TPD/Alq3:DMQA/LiF/Al,在0.28~4.5 wt%范围内改变DMQA的掺杂浓度,考察了器件的光电性能变化。结果显示,随着升高DMQA掺杂浓度,器件表现为电流略有下降,说明DMQA对载流子传输起阻挡或者陷阱作用;器件发光效率下降明显,说明DMQA分子间作用力较强,存在浓度淬灭效应,而且,器件发光光谱在570~610 nm区间存在肩峰,其强度随着DMQA浓度增加逐步增大,据此推断该肩峰来自于DMQA激基缔合物发射。  相似文献   

9.
器件结构是影响有机发光器件(OLED)性能的重要因素之一.采用8-hydroxyquinoline-aluminum(AlQ)作为发光层(EML)和电子传输层(ETL),polyvinylcarbazole (PVK)作为空穴传输层(HTL),制备了具有有机小分子/聚合物异质结结构的OLED器件,通过其电压-电流-发光亮度(V-J-B)特性测试,研究了HTL的引入及其膜厚对器件性能的影响.实验结果表明,HTL的引入有效地改善了OLED的光电性能,同时HTL膜厚对器件性能具有显著影响,当HTL膜厚为20 nm时,所制备的OLED器件具有最小的驱动电压和启亮电压、最大的发光亮度和发光效率.
Abstract:
The device construction plays an important role in improving the optoelectronic performance of organic electroluminescence devices (OLEDs). Heterojunction OLEDs with a configuration of glass/ITO/PVK/AlQ/Mg/Al were fabricated by using 8-hydroxyquinoline-aluminum (AlQ) as the emission layer (EML) and electron transport layer (ETL) and polyvinylcarbazole (PVK) as the hole transport layer (HTL). The effect of the HTL thickness on the performance of OLEDs was investigated with respect to the driving voltage, turn-on voltage, electroluminescence brightness and efficiency of the devices. Experimental results demonstrate that the optical and electrical properies of OLEDs are closely related to the HTL thickness. The device fabricated with the HTL thickness of 20 nm possesses the best photoelectric properties such as the minimum driving voltage and turn-on voltage, and the maximum electroluminescence brightness and efficiency.  相似文献   

10.
利用双靶共溅法在玻璃衬底上沉积了Zr掺杂ITO薄膜,对比研究了在不同氧流量下ITO和ITO∶Zr薄膜性能的变化.Zr的掺入促进薄膜晶化的同时也导致了(400)晶面取向的加强,ITO∶Zr比ITO薄膜具有较低的表面粗糙度.氧流量的上升降低了方阻和载流子浓度,ITO∶Zr薄膜具有更高的载流子浓度.一定范围的氧流量可以改善薄膜的可见光透过率,但过量的氧却使得薄膜的光学性能变差.通过直接跃迁的模型得出ITO∶Zr比ITO薄膜具有更宽的光学禁带.共溅法制备的ITO∶Zr薄膜比ITO薄膜表现出更好的光电性能.  相似文献   

11.
用氧化剂KMnO4溶液处理ITO表面制备了高效的有机电致发光器件(OLED).将涂有ITO的玻璃薄片浸泡到不同浓度的KMn04溶液中,并对玻璃薄片进行不同时间的超声处理,结果发现,随着KMnO4 浓度和超声时间的不同,器件的性能都有不同程度的变化.经过优化发现,当KMnO4浓度为0.005wt%超声时间为15min时,器件的亮度提高1倍多,开启电压也有明显降低,器件的效率提高了近51%.通过原子力显微镜(AFM)对ITO表面进行了对比分析发现,经过RMnO4溶液处理后的器件表面粗糙度降低了;同时,KMnO4溶液的强氧化性提高了样片的表面活性,从而使器件的性能得以提高.  相似文献   

12.
Solution-processed n-ZnO/p-poly(3,3′′′-didodecylquaterthiophene) (PQT-12) vertical p–n junction diodes were prepared on ITO-coated glass. A continuous film of ZnO nanoparticles was grown on the ITO glass by dip-coating and subsequent heat treatment of a zinc acetate film. PQT-12 was then spin-coated to form the ZnO/PQT-12 diode. Gold was chosen as the top electrode to complement ITO for this diode. The microstructures of ZnO films are studied by atomic force microscopy (AFM) and show a continuous, dense layer of ZnO nanoparticles. The current–voltage (IV) measurement shows that the maximum current density for this p–n junction diode is 400 A/cm2, which is much higher than previously reported polymer diodes. Capacitance–voltage (CV) data also provide evidence of formation of the p–n junction. The rectification was characterized by observation of full input-half output waves. Data indicate that these devices can operate up to frequencies of 14 MHz under ambient environment conditions. This rectification frequency is higher than other reported polymer Schottky diodes under these conditions. Turnon voltages of this diode are also much lower than for the reported polymer diodes.  相似文献   

13.
The performances of top-emission organic light-emitting diodes (TEOLEDs) with various P-dopant (PD) contents in the injection layer were studied by thinning or removing an indium tin oxide (ITO) film sputtered on the anode. On adjusting the thickness of the active TBPDA (N4,N4,N4′,N4′-tetra ([1,1′-biphenyl]-4-yl)-[1,1′-biphenyl]-4,4′-diamine) film used as hole transport layer, the International Commission on Illumination (CIE) coordinates of blue TEOLEDs did not change and the same CIE coordinates (0.14, 0.04) were maintained. The blue index of device I (PD of 3%) without an indium tin oxide (ITO) layer was 139.9 cd/A/CIEy at a current density of 10 mA/cm2. This value was 28% higher than that of the device B (PD of 2%), which had a 15-nm thick ITO film, and 19% higher than that of device E (PD of 2%), which had a 7-nm thick ITO film. Devices B, E, and I achieved similar voltages of approximately 3.9 V. Thus, in the optimized TEOLEDs with suitable PD contents, efficiency was improved by silver without the use of ITO as an anode.  相似文献   

14.
In this paper, p-chlorophenylacetic acid and p-fluorophenylacetic acid were applied to modify the indium tin oxide (ITO) electrodes. The surface work functions of unmodified ITO, p-chlorophenylacetic acid modified ITO (Cl-ITO) and p-fluorophenylacetic acid modified ITO (F-ITO) are 5.0 eV, 5.26 eV and 5.14 eV, respectively, and the water contact angles are 7.3°, 59.1° and 46.5°, respectively. The increase of the work function makes the hole injection ability of the devices improved, which is proved by the hole transport devices. The self-assembly (SAM) layers transfer hydrophilic ITO to hydrophobic ITO, which makes ITO more compatible with the hydrophobic organic layers, making the organic film more stable during the operation. After modification, the organic light emitting diodes (OLEDs), SAM-modified ITO/NPB/Alq3/LiF/Al, with better performance and stability were fabricated. Especially, the OLED with Cl-ITO (Cl-OLED) has a maximum luminance of 22 428 cd/m2 (improved by 32.9%) and a half-lifetime of 46 h. Our results suggest that employing organic acids to modify ITO surface can enhance the stability and the luminescent properties of OLED devices.  相似文献   

15.
Au/ZnSe:Mn/n-GaAs and Al/ZnSe:Mn/ITO dc-operated electroluminescent (EL) cells were prepared by molecular-beam epitaxy (MBE) and molecular-beam deposition(MBD), respectively. The threshold voltages achieved in each type of EL cells are lower than any other values reported so far. The ZnSe : Mn layer grown by MBE on a GaAs substrate was single-crystalline while the ZnSe:Mn layer deposited by MBD on an ITO-coated glass substrate was polycrystalline, only  相似文献   

16.
Graphene oxide (GO) is widely used as an interfacial material in applications such as organic light emitting diodes and photovoltaic devices. Herein we report a layer-by-layer (LbL) assembled GO thin film as an anode interfacial layer (AIL) for efficient polymer solar cells (PSCs). The GO thin film is fabricated by alternately depositing cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) and GO on ITO/glass substrate, which possesses controllable thickness by adjusting LbL deposition frequency. The presence of ultrathin GO films improves the work function of ITO, leading to a better contact between the active layer and ITO anode. With the optimized number of deposition times, the efficiency of 6.04% for the PSC with PDDA-GO bilayer (GO-2) as the AIL was achieved.  相似文献   

17.
ITO薄膜的制备及其光电特性研究   总被引:10,自引:1,他引:9  
采用直流磁控溅射法,分别用ITO陶瓷靶、In-Sn合金靶,在玻璃基片上镀膜。研究ITO透明导电膜其膜厚、靶材、溅射气压和溅射速率等工艺对光电特性的影响。结果表明,采用陶瓷靶镀膜要比合金靶效果好,膜厚70nm以上、溅射气压0.45Pa和溅射速率23nm/min左右为最佳工艺条件,并得到了ITO薄膜电阻率1.8×10–4Ω.cm、可见光透过率80%以上。  相似文献   

18.
陈佰军  黄劲松 《半导体光电》1997,18(2):110-112,129
报道了用有机/聚合物薄膜材料制备的双异质结发光二极管。器件结构为:玻璃衬底/ITO/PVK/AlqPBD/Alq3/Al电极。在这种结构器件中,电子和空穴分别从Al负电极和ITO正电极中注入,产在PBD及PVK中传输注入到Alq3发光层中。器件在正向偏压为4V时有绿色光输出;在正向偏压为10V,最大亮度可达3000cd/m^2以上。经光谱测试,电致发光峰值波长为523nm。  相似文献   

19.
ITO薄膜厚度和含氧量对其结构与性能的影响   总被引:1,自引:1,他引:1  
在玻璃衬底上用直流磁控溅射的方法镀制ITO透明半导体膜,采用X射线衍射技术分析了膜层晶体结构与薄膜厚度和氧含量的关系,并测量了薄膜电阻率及透光率分别随膜厚和氧含量的变化情况。以低氧氩流量比(1/40)并控制膜厚在70nm以上进行镀膜,获得了结晶性好、电阻率低且透光率高的ITO透明半导体薄膜,所镀制的ITO膜电阻率降到1.8×10–4?·cm,可见光透光率达80%以上。  相似文献   

20.
In order to improve the light efficiency of the conventional GaN-based light-emitting diodes(LEDs), the indium tin oxide(ITO) film is introduced as the current spreading layer and the light anti-reflecting layer on the p-GaN surface.There is a big problem with the ITO thin film’s corrosion during the electrode preparation.In this paper,at least,the edge of the ITO film was lateral corroded 3.5μm width,i.e.6.43%—1/3 of ITO film’s area. An optimized simple process,i.e.inductively couple plasma(ICP),was introduced to solve this problem.The ICP process not only prevented the ITO film from lateral corrosion,but also improved the LED’s light intensity and device performance.The edge of the ITO film by ICP dry etching is steep,and the areas of ITO film are whole. Compared with the chip by wet etching,the areas of light emission increase by 6.43%at least and the chip’s lop values increase by 45.9%at most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号