首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Hydrogen‐based energy is a promising renewable and clean resource. Thus, hydrogen selective microporous membranes with high performance and high stability are demanded. Novel NH2‐MIL‐53(Al) membranes are evaluated for hydrogen separation for this goal. Continuous NH2‐MIL‐53(Al) membranes have been prepared successfully on macroporous glass frit discs assisted with colloidal seeds. The gas sorption ability of NH2‐MIL‐53(Al) materials is studied by gas adsorption measurement. The isosteric heats of adsorption in a sequence of CO2 > N2 > CH4 ≈ H2 indicates different interactions between NH2‐MIL‐53(Al) framework and these gases. As‐prepared membranes are measured by single and binary gas permeation at different temperatures. The results of singe gas permeation show a decreasing permeance in an order of H2 > CH4 > N2 > CO2, suggesting that the diffusion and adsorption properties make significant contributions in the gas permeation through the membrane. In binary gas permeation, the NH2‐MIL‐53(Al) membrane shows high selectivity for H2 with separation factors of 20.7, 23.9 and 30.9 at room temperature (288 K) for H2 over CH4, N2 and CO2, respectively. In comparison to single gas permeation, a slightly higher separation factor is obtained due to the competitive adsorption effect between the gases in the porous MOF membrane. Additionally, the NH2‐MIL‐53(Al) membrane exhibits very high permeance for H2 in the mixtures separation (above 1.5 × 10?6 mol m?2 s?1 Pa?1) due to its large cavity, resulting in a very high separation power. The details of the temperature effect on the permeances of H2 over other gases are investigated from 288 to 353 K. The supported NH2‐MIL‐53(Al) membranes with high hydrogen separation power possess high stability, resistance to cracking, temperature cycling and show high reproducibility, necessary for the potential application to hydrogen recycling.  相似文献   

2.
Black phosphorus (BP) is a promising 2D nanomaterial with a great potential in various areas, while its intrinsic instability greatly suppresses practical applications, particularly under harsh conditions (e.g., high temperature). Herein, BP functionalization with Al ion is achieved in an integrated manner through MIL‐53 metal‐organic framework (MOF) coating, which greatly improves both ambient and thermal stability of BP. For the obtained MIL‐53 coated BP (BP@MIL‐53), abundant Al ion within MIL‐53 interacts with the lone pair electrons of BP, and subsequently decreases the BP surface electron density, reducing the reactivity of BP toward O2 and H2O. The MOF growth crosslinks the Al ion on the BP surface, and achieves integrated functionalization to withstand the detachment of individual Al ion from the BP surface. The noncovalent bond of BP? Al and highly porous structure of MIL‐53 preserve the physical/chemical properties of BP to the maximum, and render BP@MIL‐53 with super‐stability. This functionalization strategy extends the applications of BP based devices under high temperature conditions. As a proof of concept, BP@MIL‐53 is further utilized as a NO2 gas sensor under relatively high operating temperatures. The BP@MIL‐53 sensor exhibits fast response, outstanding selectivity, and high recovery dynamic process in contrast to bare BP sensor.  相似文献   

3.
Membranes have seen a growing role in mitigating the extensive energy used for gas separations. Further expanding their effectiveness in reducing the energy penalty requires a fast separation process via a facile technique readily integrated with industrial membrane formation platforms, which has remained a challenge. Here, an ultrapermeable polyimide/metal‐organic framework (MOF) hybrid membrane is reported, enabling ultrafast gas separations for multiple applications (e.g., CO2 capture and hydrogen regeneration) while offering synthetic enhanced compatibility with the current membrane manufacturing processes. The membranes demonstrate a CO2 and H2 permeability of 2494 and 2932 Barrers, respectively, with a CO2/CH4, H2/CH4, and H2/N2 selectivity of 29.3, 34.4, and 23.8, respectively, considerably surpassing the current Robeson permeability–selectivity upper bounds. At a MOF loading of 55 wt%, the membranes display a record‐high 16‐fold enhancement of H2 permeability comparing with the neat polymer. With mild membrane processing conditions (e.g., a heating temperature less than 80 °C) and a performance continuously exceeding Robeson upper bounds for over 5300 h, the membranes exhibit enhanced compatibility with state‐of‐the‐art membrane manufacturing processes. This performance results from intimate interactions between the polymer and MOFs via extensive, direct hydrogen bonding. This design approach offers a new route to ultraproductive membrane materials for energy‐efficient gas separations.  相似文献   

4.
Incorporation of defects in metal–organic frameworks (MOFs) offers new opportunities for manipulating their microporosity and functionalities. The so-called “defect engineering” has great potential to tailor the mass transport properties in MOF/polymer mixed matrix membranes (MMMs) for challenging separation applications, for example, CO2 capture. This study first investigates the impact of MOF defects on the membrane properties of the resultant MOF/polymer MMMs for CO2 separation. Highly porous defect-engineered UiO-66 nanoparticles are successfully synthesized and incorporated into a CO2-philic crosslinked poly(ethylene glycol) diacrylate (PEGDA) matrix. A thorough joint experimental/simulation characterization reveals that defect-engineered UiO-66/PEGDA MMMs exhibit nearly identical filler–matrix interfacial properties regardless of the defect concentrations of their parental UiO-66 filler. In addition, non-equilibrium molecular dynamics simulations in tandem with gas transport studies disclose that the defects in MOFs provide the MMMs with ultrafast transport pathways mainly governed by diffusivity selectivity. Ultimately, MMMs containing the most defective UiO-66 show the most enhanced CO2/N2 separation performance—CO2 permeability = 470 Barrer (four times higher than pure PEGDA) and maintains CO2/N2 selectivity = 41—which overcomes the trade-off limitation in pure polymers. The results emphasize that defect engineering in MOFs would mark a new milestone for the future development of optimized MMMs.  相似文献   

5.
The preparation and characterization of new, tailor‐made polymeric membranes using poly(styrene‐b‐butadiene‐b‐styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self‐assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO2, N2, and CH4). The CH4/N2 ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH4 permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N2 content. The CO2/N2 ideal selectivity of 50, coupled with a CO2 permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post‐combustion capture of carbon dioxide.  相似文献   

6.
Synthesis of metal–organic frameworks (MOFs) is based on coordination‐driven self‐assembly of metal ions and organic ligands. However, to date, it remains difficult to adjust the coordination behaviors of MOFs and then control geometric shapes of nanostructures; especially their morphologies in 1D nanofibers or 2D nanosheets have seldom been explored. Here, a facile route at room temperature and ambient pressure is reported for the preparation of copper‐based MOFs with low‐dimensional shapes (i.e., nanofibers, nanorods, nanosheets, and nanocuboids), via thermodynamic and kinetic controls over the anisotropic growth. Importantly, the as‐prepared 2D MOF nanosheets with monocrystalline nature (100% exposed {010} facets) provide a material platform to the fabrication of 2D supported metal nanocatalysts. First, the MOF nanosheets can serve as a self‐templating solid precursor to prepare different CuO and CuO‐Cu2O nanocomposites, or even Cu metals via thermolysis or reduction under controlled atmospheres. Upon their formation, second, ultrafine noble metal nanoparticles (e.g., Au, Ag, Pt, Pd, Au0.4Pt0.6, Au0.4Pd0.6, and Au0.3Pt0.3Pd0.4) can be exclusively anchored on the external surfaces of the MOF nanosheets. To show their open accessibility, catalytic activities of the derived catalysts have been evaluated using CO2 hydrogenation and 4‐nitrophenol reduction in gas phase and liquid phase, respectively.  相似文献   

7.
The thermal properties of epoxy‐based binary composites comprised of graphene and copper nanoparticles are reported. It is found that the “synergistic” filler effect, revealed as a strong enhancement of the thermal conductivity of composites with the size‐dissimilar fillers, has a well‐defined filler loading threshold. The thermal conductivity of composites with a moderate graphene concentration of fg = 15 wt% exhibits an abrupt increase as the loading of copper nanoparticles approaches fCu ≈ 40 wt%, followed by saturation. The effect is attributed to intercalation of spherical copper nanoparticles between the large graphene flakes, resulting in formation of the highly thermally conductive percolation network. In contrast, in composites with a high graphene concentration, fg = 40 wt%, the thermal conductivity increases linearly with addition of copper nanoparticles. A thermal conductivity of 13.5 ± 1.6 Wm?1K?1 is achieved in composites with binary fillers of fg = 40 wt% and fCu = 35 wt%. It has also been demonstrated that the thermal percolation can occur prior to electrical percolation even in composites with electrically conductive fillers. The obtained results shed light on the interaction between graphene fillers and copper nanoparticles in the composites and demonstrate potential of such hybrid epoxy composites for practical applications in thermal interface materials and adhesives.  相似文献   

8.
Template‐free self‐assembly synthesis of nano‐sized metal‐organic frameworks (MOFs) is of particular interest in MOF research since organized nanostructures possessing distinctive properties are useful for many advanced applications. In this work, the facile room temperature synthesis of robust submicrometer‐sized ZIF‐71 crystals with different particle sizes (140, 290, or 430 nm), having a high permanent microporosity (SBET = 827 cm2 g?1) and synthesis yield up to 80% based on Zn on a gram‐scale, is reported. These small ZIF‐71 particles are ideal filler for the fabrication of thinner and homogeneous polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) with excellent filler dispersion and filler‐polymer adhesion at high loading up to 40 wt%, as confirmed by scanning electron microscopy. Pervaporation tests using these submicrometer‐sized ZIF‐71 filled MMMs show significant improvement for bioethanol recovery. Interesting phenomena of i) reversible ethanol‐ethanol hydrogen interaction in the ethanol liquid‐phase and ii) irreversible hydrogen interaction of ethanol and –Cl functional group in the α‐cages and octagonal prismatic cages of ZIF‐71 in ethanol vapor‐phase are discovered for the first time by a Fourier transform infrared spectroscopy (FTIR) study. In full agreement with molecular simulation results, these explain fundamentally the ZIF‐71 filled MMMs pervaporation performance.  相似文献   

9.
Mixed matrix membranes (MMMs) comprising size‐sieving fillers dispersed in polymers exhibit diffusivity selectivity and may surpass the upper bound for gas separation, but their performance is limited by defects at the polymer/filler interface. Herein, a fundamentally different approach employing a highly sorptive filler that is inherently less sensitive to interfacial defects is reported. Palladium nanoparticles with extremely high H2 sorption are dispersed in polybenzimidazole at loadings near the percolation threshold, which increases both H2 permeability and H2/CO2 selectivity. Performance of these MMMs surpasses the state‐of‐the‐art upper bound for H2/CO2 separation with polymer‐based membranes. The success of these sorption‐enhanced MMMs for H2/CO2 separation may launch a new research paradigm that taps the enormous knowledge of affinities between gases and nanomaterials to design MMMs for a wide variety of gas separations.  相似文献   

10.
The development of efficient catalysts is of great importance for hydrogen evolution reaction (HER) of water splitting via electrocatalytic/photocatalytic processes to remediate the current severe environmental and energy problems. By aid of the stabilization effects of uncoordinated groups and inherent pore‐confinement of amine‐functionalized metal–organic frameworks (NH2‐MIL‐125), two forms of Ru species including nanoparticles (NPs) and/or single atoms (SAs) can be firmly embedded in NH2‐MIL‐125 derived N‐doped TiO2/C support (N‐TC), and thus obtain two kinds of samples named Ru‐NPs/SAs@N‐TC and Ru‐SAs@N‐TC, respectively. In the synthetic process, the initial feeding amount of Ru3+ ions not only strongly determines the final size and dispersion states of Ru species but also the morphology and defective structures of N‐TC support. Impressively, Ru‐NPs/SAs@N‐TC exhibit superior catalytic activities to Ru‐SAs@N‐TC for either electrocatalytic or photocatalytic HER. This should be attributed to its larger specific surface area and benefiting from synergistic coupling of Ru NPs and Ru SAs. It is envisioned that the present work can provide a new avenue for development of high‐efficiency and multifunctional hybrid catalysts in sustainable energy conversion.  相似文献   

11.
The replicative construction of metal–organic frameworks (MOFs) templated with solvent‐insoluble solid substrates is of marked importance, as it allows for the assembly of 2D and 3D macro‐ and mesoscopic architectures with properties that are challenging to attain by the conventional solution‐based synthesis approach. This work reports an in situ and direct construction of MOFs from zero‐valent metal substrates via a green hydrothermal oxidation–MOF construction chemistry without the use of any additional metal source, chemical reagents, or acidification of solvent, and elucidates the zero‐valent metal derived formation mechanisms of MOFs and their structure modulation to 1D nanofibers (NFs), 2D film, and 3D core–shell microstructures. Through modulation of the competing surface oxidation‐dissolution and MOF crystallization kinetics, Al@MIL‐53 core–shell microstructures and MIL‐53 (Al) NFs are obtained that exhibit unique morphologies and marked properties superior to the conventional MIL‐53 (Al) powders. The generality of zero‐valent metal‐templated synthesis of MOFs is demonstrated with formation of MIL‐53 (Al), HKUST‐1, and ZIF‐7 polycrystalline films on Al, Cu, and Zn metal meshes, elucidating the significance of the approach utilizing solid metal substrate that can be easily processed into various shapes, architectures, and compositions.  相似文献   

12.
The topology and chemical functionality of metal–organic frameworks (MOFs) make them promising candidates for membrane gas separation; however, few meet the criteria for industrial applications, that is, selectivity of >30 for CO2/CH4 and CO2/N2. This paper reports on a dense CAU-10-H MOF membrane that is exceptionally CO2-selective (ideal selectivity of 42 for CO2/N2 and 95 for CO2/CH4). The proposed membrane also achieves the highest CO2 permeability (approximately 500 Barrer) among existing pure MOF membranes with CO2/CH4 selectivity exceeding 30. State-of-the-art atomistic simulations provide valuable insights into the outstanding separation performance of CAU-10-H at the molecular level. Adsorbent–adsorbate Coulombic interactions are identified as a crucial factor in the design of CO2-selective MOF membranes.  相似文献   

13.
Metal–organic framework (MOF) films have recently emerged as highly permselective membranes yielding orders of magnitude higher gas permeance than that from the conventional membranes. However, synthesis of highly intergrown, ultrathin MOF films on porous supports without complex support‐modification has proven to be a challenge. Moreover, there is an urgent need of a generic crystallization route capable of synthesizing a wide range of MOF structures in an intergrown, thin‐film morphology. Herein, a novel electrophoretic nuclei assembly for crystallization of highly intergrown thin‐films (ENACT) approach, that allows synthesis of ultrathin, defect‐free ZIF‐8 on a wide range of unmodified supports (porous polyacrylonitrile, anodized aluminum oxide, metal foil, porous carbon and graphene), is reported. As a result, a remarkably high H2 permeance of 8.3 × 10?6 mol m?2 s?1 Pa?1 and ideal gas selectivities of 7.3, 15.5, 16.2, and 2655 for H2/CO2, H2/N2, H2/CH4, and H2/C3H8, respectively, are achieved from an ultrathin (500 nm thick) ZIF‐8 membrane. A high C3H6 permeance of 9.9 × 10?8 mol m?2 s?1 Pa?1 and an attractive C3H6/C3H8 selectivity of 31.6 are obtained. The ENACT approach is straightforward, reproducible and can be extended to a wide range of nanoporous crystals, and its application in the fabrication of intergrown ZIF‐7 films is demonstrated.  相似文献   

14.
The small‐sized molecules that have been developed from single hydrophobic amino acids (Phe, Trp, Tyr and Leu) by suitably protecting the –NH2 and –CO2H groups generate diverse nanoscopic structures – such as nanorods, nanofibrils, nanotubes, and nanovesicles – depending upon the protection parameters and solvent polarity. The vesicular structures get disrupted in the presence of various salts, such as KCl, CaCl2, (NH4)2SO4 and N(n‐Bu)4Br. Insertion of unnatural (o/m/p)‐aminobenzoic acids as a protecting group and the lack of conventional peptide bonds in the molecules give the nanostructures proteolytic stability. The nanostructures also show significant thermal stability along with a morphological transformation upon heat treatment. Our in vitro studies reveal that the addition of micromolar concentration “curcumin” significantly reduces the formation of amyloid‐like fibrils. These diverse nanostructures are used as a template for fabricating silver nanoparticles on their outer surfaces as well as in the inner part, followed by calcination in air which helps to obtain a 1D silver nanostructure. Furthermore, the nanovesicles are observed to encapsulate a potent drug (curcumin) and other biologically important molecules, which could be released through salt‐triggered disruption of vesicles.  相似文献   

15.
A new type of photodynamic carbon capture material with up to 26 wt% CO2 desorption capacity is synthesized via incorporation of diarylethene (DArE) as guest molecules in porous aromatic framework‐1 (PAF‐1). In these host–guest complexes, the carboxylic acid groups featured in DArE allow multiple noncovalent interactions to exist. DArE loadings ranging from 1 to 50 wt% are incorporated in PAF‐1 and the complexes characterized by UV–vis spectroscopy, FT‐IR spectroscopy, CO2, and N2 adsorption. Successful inclusion of DArE in PAF‐1 is indicated by the reduction of pore size distributions and an optimum loading of 5 wt% is determined by comparing the percentage photo­response and CO2 uptake capacity at 1 bar. Mechanistic studies suggest that photoswitching modulates the binding affinity between DArE and CO2 toward the host, triggering carbon capture and release. This is the first known example of photodynamic carbon capture and release in a PAF.  相似文献   

16.
Recently, a methodology for fabricating polycrystalline metal‐organic framework (MOF) membranes has been introduced – referred to as interfacial microfluidic membrane processing – which allows parallelizable fabrication of MOF membranes inside polymeric hollow fibers of microscopic diameter. Such hollow fiber membranes, when bundled together into modules, are an attractive way to scale molecular sieving membranes. The understanding and engineering of fluidic processing techniques for MOF membrane fabrication are in their infancy. Here, a detailed mechanistic understanding of MOF (ZIF‐8) membrane growth under microfluidic conditions in polyamide‐imide hollow fibers is reported, without any intermediate steps (such as seeding or surface modification) or post‐synthesis treatments. A key finding is that interfacial membrane formation in the hollow fiber occurs via an initial formation of two distinct layers and the subsequent rearrangement into a single layer. This understanding is used to show how nonisothermal processing allows fabrication of thinner (5 μm) ZIF‐8 films for higher throughput, and furthermore how engineering the polymeric hollow fiber support microstructure allows control of defects in the ZIF‐8 membranes. The performance of these engineered ZIF‐8 membranes is then characterized, which have H2/C3H8 and C3H6/C3H8 mixture separation factors as high as 2018 and 65, respectively, and C3H6 permeances as high as 66 GPU.  相似文献   

17.
Filler nanoparticles greatly enhance the performance of polymers and minimize filler content in the resulting nanocomposites. At the same time, they challenge the manufacturing of such nanocomposites by filler agglomeration and non‐uniform spatial distribution. Here, multifunctional nanocomposite films are made by capitalizing on flame‐synthesis of ceramic or metal filler nanoparticles followed by rapid, in situ deposition on sacrificial substrates, resulting in a filler film with controlled porosity. The polymer is then spin‐coated on the porous film that retained its stochastic but uniform structure, resulting in nanocomposites with homogeneous filler distribution and high filler‐loading. By sequential repetition of this procedure, sophisticated, multilayer, free‐standing, plasmonic‐ (Ag‐Fe2O3) and phosphorescent‐superparamagnetic (Y2O3:Eu3+‐ Fe2O3) actuators are made by precisely tuning the polymer thickness between each functional nanostructured layer. These actuators are quite flexible, have fast response times, and exhibit superior superparamagnetism due to their high filler content and homogeneous spatial distribution.  相似文献   

18.
Functionalized porous aromatic frameworks (PAFs) are excellent candidate materials for hybrid membrane fabrication. However, tailoring PAFs for membrane CO2 separation with desirable performance is still a challenge. Here, facile fabrication of functional hybrid alkylamine-modified PAF-1 containing membranes with high compatibility for efficient CO2/N2 separation is reported. The methylamino groups are installed on PAF-1 resulting in PAF-1-CH2NH2 that has a high surface area of over 1400 m2 g–1 and unique CO2 adsorption with CO2/N2 thermodynamic selectivity of over 1000. Amidation reaction is developed for PAF-1-CH2NH2 cross linking with cPIM-1 (carboxylic polymer of intrinsic microporosity), giving a homogenous compatible membrane of PAF-1-CH2NH2—cPIM-1 with outstanding CO2 permeability (≈10790 Barrer) and high CO2/N2 permselectivity (≈43). This membrane outperforms the counterparts derived from parent PAF-1 and phenylamine PAF-1 and possesses superior performance to other relevant membranes for CO2/N2 separation. Such a membrane can selectively and stably separate CO2 from N2 in a simulated flue gas mixture, demonstrating its huge potential in carbon capture.  相似文献   

19.
The cover shows the structure of an efficient polymer light emitting diode (PLED) and its energy diagram at the interface between aluminum (Al) and a Cs2CO3 interfacial layer. It reveals the origin of enhanced electron injection from the Al electrode due to the low work function of a thermally evaporated Cs2CO3 layer, as reported on p. 1966 by Jinsong Huang, Zhen Xu, and Yang Yang. Pictures of the white‐ and red‐emitting PLEDs are also shown. Nanostructured layers of Cs2CO3 are shown to function very effectively as cathodes in organic electronic devices because of their good electron‐injection capabilities. Here, we report a comprehensive study of the origin of the low work function of nanostructured layers of Cs2CO3 prepared by solution deposition and thermal evaporation. The nanoscale Cs2CO3 layers are probed by various characterization methods including current–voltage (I–V) measurements, photovoltaic studies, X‐ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS), and impedance spectroscopy. It is found that thermally evaporated Cs2CO3 decomposes into CsO2 and cesium suboxides. The cesium suboxides dope CsO2, yielding a heavily doped n‐type semiconductor with an intrinsically low work function. As a result, devices fabricated using thermally evaporated Cs2CO3 are relatively insensitive to the choice of the cathode metal. The reaction of thermally evaporated Cs2CO3 with Al can further reduce the work function to 2.1 eV by forming an Al–O–Cs complex. Solution‐processed Cs2CO3 also reduces the work function of Au substrates from 5.1 to 3.5 eV. However, devices prepared using solution‐processed Cs2CO3 exhibit high efficiency only if a reactive metal such as Al or Ca is used as the cathode metal. A strong chemical reaction occurs between spin‐coated Cs2CO3 and thermally evaporated Al. An Al–O—Cs complex is formed as a result of this chemical reaction at the interface, and this layer significantly reduces the work function of the cathode. Finally, impedance spectroscopy results prove that this layer is highly conductive.  相似文献   

20.
Nanostructured layers of Cs2CO3 are shown to function very effectively as cathodes in organic electronic devices because of their good electron‐injection capabilities. Here, we report a comprehensive study of the origin of the low work function of nanostructured layers of Cs2CO3 prepared by solution deposition and thermal evaporation. The nanoscale Cs2CO3 layers are probed by various characterization methods including current–voltage (I–V) measurements, photovoltaic studies, X‐ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS), and impedance spectroscopy. It is found that thermally evaporated Cs2CO3 decomposes into CsO2 and cesium suboxides. The cesium suboxides dope CsO2, yielding a heavily doped n‐type semiconductor with an intrinsically low work function. As a result, devices fabricated using thermally evaporated Cs2CO3 are relatively insensitive to the choice of the cathode metal. The reaction of thermally evaporated Cs2CO3 with Al can further reduce the work function to 2.1 eV by forming an Al–O–Cs complex. Solution‐processed Cs2CO3 also reduces the work function of Au substrates from 5.1 to 3.5 eV. However, devices prepared using solution‐processed Cs2CO3 exhibit high efficiency only if a reactive metal such as Al or Ca is used as the cathode metal. A strong chemical reaction occurs between spin‐coated Cs2CO3 and thermally evaporated Al. An Al–O—Cs complex is formed as a result of this chemical reaction at the interface, and this layer significantly reduces the work function of the cathode. Finally, impedance spectroscopy results prove that this layer is highly conductive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号