首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

2.
We study the problem of designing an efficient resource allocation scheme in the application of providing integrated multimedia services over a digital subscriber line. For a predefined quality of service (QoS) requirement and data throughput, we show that the transmitted power consumption can be reduced by applying the parallel transmission framework previously proposed. Data streams are recognized as a set of layers with different data rate and bit error rate requirements. The characteristics of the telephone channel can be utilized to provide unequal error protection naturally and thus efficiently. Simulation results provide comparison of the proposed parallel transmission framework to the existing schemes designed for general data, and demonstrate significant performance improvement, such as a 0.5-2 dB power gain  相似文献   

3.
陈赓  夏玮玮  沈连丰 《通信学报》2014,35(12):78-88
针对异构无线网络融合环境提出了一种基于多门限预留机制的自适应带宽分配算法,从而为多业务提供QoS保证。该算法采用多宿主传输机制,通过预设各个网络中不同业务的带宽分配门限,并基于各个网络中不同业务和用户的带宽分配矩阵,根据业务k支持的传输速率等级需求和网络状态的变化,将自适应带宽分配问题转化为一个动态优化问题并采用迭代方法来求解,在得到各个网络中不同业务和用户优化的带宽分配矩阵的同时,在带宽预留门限和网络容量的约束条件下实现网络实时吞吐量的最大化,以提高整个异构网络带宽的利用效率。数值仿真结果显示,所提算法能够支持满足QoS需求的传输速率等级,减小了新用户接入异构网络的阻塞概率,提高了平均用户接入率并将网络吞吐量最大提高40%。  相似文献   

4.
The authors propose a physical-datalink cross-layer resource allocation scheme over wireless relay networks for quality-of-service (QoS) guarantees. By integrating information theory with the concept of effective capacity, the proposed scheme aims at maximizing the relay network throughput subject to a given delay QoS constraint. This delay constraint is characterized by the so-called QoS exponent thetas, which is the only requested information exchanged between the physical layer and the datalink layer in our cross-layer design based scheme. Over both amplify-and-forwards (AF) and decode-and-forward (DF) relay networks; the authors develop the associated dynamic resource allocation algorithms for wireless multimedia communications. Over DF relay network, the authors also study a fixed power allocation scheme to provide QoS guarantees. The simulations and numerical results verify that our proposed cross-layer resource allocation can efficiently support diverse QoS requirements over wireless relay networks. Both AF and DF relays show significant superiorities over direct transmissions when the delay QoS constraints are stringent. On the other hand, the results demonstrate the importance of deploying the dynamic resource allocation for stringent delay QoS guarantees.  相似文献   

5.
This paper presents an efficient scheme to optimize multiple layers in multi-hop wireless networks with throughput objectives. Considering channel sensing and power control at the physical layer, a non-convex throughput optimization problem is formulated for resource allocation and a genetic algorithm is designed to allow distributed implementation. To address link and network layers, a localized back-pressure algorithm is designed to make routing, scheduling, and frequency band assignments along with physical-layer considerations. Our multi-layer scheme is extended to cognitive radio networks with different user classes and evaluate our analytical solution via simulations. Hardware-in-the-loop emulation test results obtained with real radio transmissions over emulated channels are presented to verify the performance of our distributed multi-layer optimization solution for multi-hop wireless networks. Finally, a security system is considered, where links have their security levels and data flows require certain security levels on each of its links. This problem is addressed by formulating additional constraints to the optimization problem.  相似文献   

6.
Efficient resource allocation for China's 3G/4G wireless networks   总被引:1,自引:0,他引:1  
The all-IP DiffServ model is expected to be the most promising architecture for QoS provisioning in China's next-generation wireless networks, due to its scalability, convenience for mobility support, and capability of interworking heterogeneous radio access networks. This article focuses on efficient resource allocation in a wireless DiffServ architecture. Resource utilization efficiency is particularly important for China's wireless networks as the mobile user density in China is and will continue to be much higher than that in other countries. More specifically, we propose a novel buffer sharing scheme to provide assured service for real-time layer-coded multimedia traffic, which can guarantee the specific packet loss requirement of each layer with UDP as the transport layer protocol. An adaptive optimal buffer configuration can be applied to achieve maximum resource utilization over the time-varying channel. Assured service is also provided to TCP data traffic for guaranteed throughput, where the cross-layer coupling between the TCP layer and link layer is exploited to efficiently utilize the wireless resources.  相似文献   

7.
The 19 papers in this special issue focus on cross-layer optimized wireless multimedia communications. The papers are organized into four sections: quality of service support for wireless networks; system architecture for multimedia over wireless networks; resource allocation in wireless multimedia communications, and multimedia coding and scheduling issues in wireless networks.  相似文献   

8.
本文研究了在ADSL(不对称数字用户线)上提供多媒体服务时的资源分配方案,说明了对于不同QoS和数据流要求通过并行传输机制降低功耗的关键问题。本文把数据流按照不同的数据率和比特错误率(BER)要求划分为一系列的层,利用ADSL信道的特点提供不均匀的错误保护。仿真结果对本文的算法和现存为通用数据而设计的方案进行了比较,说明了其性能达到了0.5-2dB的功率增益改进。  相似文献   

9.
This paper presents a prioritized resource allocation algorithm to share the limited communication channel resource among multiple wireless body area networks. The proposed algorithm is designed based on an active superframe interleaving scheme, one of the coexistence mechanisms in the IEEE 802.15.6 standard. It is the first study to consider the resource allocation method among wireless body area networks within a communication range. The traffic source of each wireless body area network is parameterized using the traffic specification, and required service rate for each wireless body area networks can be derived. The prioritized resource allocation algorithm employs this information to allocate the channel resource based on the wireless body area networks’ service priority. The simulation results verified that the traffic specification and the wireless body area network service priority based resource allocation are able to increase quality of service satisfaction, particularly for health and medical services.  相似文献   

10.
Video streaming service over wireless networks is a challenging task because of the changes in the wireless channel conditions that can occur due to interference, fading, and station mobility. Moreover, the IEEE 802.11 WLAN standard does not contain any specifications for the rate adaptation scheme which are useful for improving the wireless link utilization. To provide efficient wireless video streaming service, the rate adaptation scheme should be applied at the low layer and the quality adaptation scheme should be considered at the high layer. To meet this requirement of wireless video streaming, we propose a new cross-layer design for video streaming over wireless networks. This design includes the rate adaptation scheme in the data link and physical layers and the quality adaptation scheme in the application layer. The rate adaptation scheme adjusts the data transmission rate based on the measured RSSI at the sender-side and informs the quality adaptation scheme about the rate limits. Then the quality adaptation scheme utilizes this rate limits to adjust the quality of the video stream. Through performance evaluations, we prove that our cross-layer design improves the wireless link utilization and the quality of the video stream simultaneously.  相似文献   

11.
The huge commercial success of mobile telephony, the phenomenal growth of Internet users, the popularity of IP-based multimedia applications are the major driving forces behind third-generation (3G), ongoing Byond 3G (B3G), and forth-genertion (4G) evolution. 3G brought wired applications, both data and multimedia, into wireless environments. It operates on IP-based infrastructures to provide wider service access capability. To support and satisfy QoS (Quality of Service) of diverse IP-based multimedia applications, traffic management, such as Connection Admission Control (CAC) and resource allocation, becomes essential. CAC and resource allocation are computationally complex when combined with QoS guarantee for traffic with different characteristics. However, CAC and resource allocation are real-time traffic control procedures. Hence, processing load should be minimized to reduce delay. At the same time, network resources should be utilized efficiently to accommodate more users. However, reducing processing load and obtaining high resource utilization efficiency has been considered to be contradictory matter. In addition, CAC and resource allocation schemes which consider multiple QoS criteria – loss and delay – simultaneously have not been adequately studied. Simultaneous QoS consideration is important to satisfy stringent and diverse QoS requirements of multimedia traffic. In this paper, we propose a nobel effective bandwidth/buffer calculation method based on a virtual channel/buffer analysis scheme. We show that our method can achieve high resource utilization efficiency with reduced processing load. Moreover, we show that our scheme allows for simultaneous consideration of multiple QoS criteria, loss and delay.  相似文献   

12.
孙健  宋建新 《信息技术》2006,30(6):30-33
首先讨论了MIMO-OFDM无线通信系统的物理层技术原理,接着介绍了一种下行MIMO-OFDM系统中基于PHY-MAC跨层设计的保证不同类型(实时与非实时)用户服务质量(QoS)的动态资源分配(DRA)方案。该方案中系统能够根据不同的信道状态以及不同类型的QoS要求在PHY层和MAC层联合动态分配资源,相对传统的分层结构设计更为合理有效。  相似文献   

13.
When multiple video streams share a wireless network, careful rate allocation is needed to prevent congestion, as well as to balance the video qualities among the competing streams. In this paper, we present a unified optimization framework for video rate allocation over wireless networks. Our framework applies to both unicast and multicast sessions, and accommodates both scalable and non-scalable streams. The optimization objective is to minimize the total distortion of all video streams without incurring excessive network utilization. Our system model explicitly accounts for heterogeneity in wireless link capacities, traffic contention among neighboring links, as well as different video rate-distortion (RD) characteristics. The proposed distributed media-aware rate allocation scheme leverages cross-layer information exchange between the MAC and application layers to achieve fast convergence at the optimal allocation.We evaluate performance of the proposed scheme for streaming of high-definition (HD) and standard-definition (SD) video sequences over 802.11-based wireless networks, both in unicast and multicast scenarios. The scheme consistently outperforms conventional TCP-Friendly Rate Control (TFRC) in terms of overall video quality, and achieves more balanced qualities among the streams.  相似文献   

14.
There have been increasing concerns about the security issues of wireless transmission of multimedia in recent years. Wireless networks, by their natures, are more vulnerable to external intrusions than wired ones. Therefore, many applications demand authenticating the integrity of multimedia content delivered wirelessly. In this work, we propose a framework for jointly authenticating and coding multimedia to be transmitted over heterogeneous wireless networks. We firstly provide a novel graph-based authentication scheme which can not only construct the authentication graph flexibly but also trade-off well among some practical requirements such as overhead, robustness and delay. And then, a rate-distortion optimized joint source-channel coding (JSCC) approach for error-resilient scalable encoded video is presented, in which the video is encoded into multiple independent streams and each stream is assigned forward error correction (FEC) codes to avoid error propagation. Furthermore, we consider integrating authentication with the specific JSCC scheme to achieve a satisfactory authentication results and end-to-end reconstruction quality by optimally applying the appropriate authentication and coding rate. Simulation results show the effectiveness of the proposed authentication-coding scheme for multimedia over wireless networks.  相似文献   

15.
Device‐to‐device (D2D) communication in the fifth‐generation (5G) wireless communication networks (WCNs) reuses the cellular spectrum to communicate over the direct links and offers significant performance benefits. Since the scarce radio spectrum is the most precious resource for the mobile‐network operators (MNOs), optimizing the resource allocation in WCNs is a major challenge. This paper proposes an adaptive resource‐block (RB) allocation scheme for adequate RB availability to every D2D pair in a trisectored cell of the 5G WCN. The hidden Markov model (HMM) is used to allocate RBs adaptively, promoting high resource efficiency. The stringent quality‐of‐service (QoS) and quality‐of‐experience (QoE) requirements of the evolutionary 5G WCNs must not surpass the transmission power levels. This is also addressed while using HMM for RB allocation. Thus, an energy‐efficient RB allocation is performed, with higher access rate and mean opinion score (MOS). Cell sectoring effectively manages the interference in the 5G networks amid ultrauser density. The potency of the proposed adaptive scheme has been verified through simulations. The proposed scheme is an essential approach to green communication in 5G WCNs.  相似文献   

16.
We propose to add a new dimension to existing wireless multimedia systems by enabling autonomous stations to dynamically compete for communication resources through adjustment of their internal strategies and sharing their private information. We focus on emerging spectrum agile wireless networks, where developing an efficient strategy for managing available communication resources is of high importance. The proposed dynamic resource management approach for wireless multimedia changes the passive way stations are currently adapting their joint source-channel coding strategies according to available wireless resources. Each wireless station can play the resource management game by adapting its multimedia transmission strategy depending on the experienced channel conditions and user requirements. The resource allocation game is coordinated by a network moderator, which deploys mechanism-based resource management to determine the amount of transmission time to be allocated to various users on different frequency bands such that certain global system metrics are optimized. Subsequently, the moderator charges the various users based on the amount of resources it has allocated to them, in order to discourage them from being dishonest about their resource requirements. We investigate and quantify both the users' and the system performance when different cross-layer strategies, and hence users' levels of smartness, are deployed by wireless stations. Our simulations show that mechanism-based resource management outperforms conventional techniques such as air-fair time and equal time resource allocation in terms of the obtained system utility. They also provide insights that can guide the design of emerging spectrum agile network protocols and applications  相似文献   

17.
One of the major challenges in supporting multimedia services over Internet protocol (IP)-based code-division multiple-access (CDMA) wireless networks is the quality-of-service (QoS) provisioning with efficient resource utilization. Compared with the circuit-switched voice service in the second-generation CDMA systems (i.e., IS-95), heterogeneous multimedia applications in future IP-based CDMA networks require more complex QoS provisioning and more sophisticated management of the scarce radio resources. This paper provides an overview of the CDMA-related QoS provisioning techniques in the avenues of packet scheduling, power allocation, and network coordination, summarizes state-of-the-art research results, and identifies further research issues.  相似文献   

18.
19.
未来无线网络将为固定和移动用户提供多媒体通信和计算业务.为移动用户提供无线多媒体业务的一个最关键的挑战是保证端到端连接的业务质量.通过重复使用无线频谱的微蜂窝或微微蜂窝结构是一个有前途的改善移动多媒体网络容量的方式.但切换次数随着蜂窝大小的降低而增加.移动多媒体网络的一个至关重要的问题是需要可以满足各种QoS需要且有更高资源利用率的有效切换方式.该文提出了一种称为基于动态信道预约的自适应QoS切换算法,并与其它切换方式进行了性能比较.  相似文献   

20.
The available unlicensed spectrum is increasingly being used by new wireless technologies, but past measurements show that the licensed spectrum is extremely underutilized. To address this issue, the IEEE 802.22 Working Group is developing a novel wireless air interface standard based on cognitive radios (CRs), i.e. IEEE 802.22 wireless regional area networks (WRANs). Moreover, over the last decade wireless multimedia applications have developed rapidly, raising significant concerns about the quality of service (QoS) of multimedia stream transmissions. In particular, the Joint Video Team (JVT) and ITU‐T Video Coding Experts Group (VCEG) jointly proposed Scalable Video Coding (SVC) as the next‐generation multimedia compression standard. However, the current IEEE 802.22 WRAN draft does not specify QoS mechanisms for SVC‐encoded multimedia stream transmission in CR networks. To resolve this problem, we developed a cross‐layer channel allocation algorithm (CLCAA) and a novel media access control (MAC) protocol to work with the algorithm. The CLCAA adapts to the characteristics of multimedia traffic and variations of wireless channels by determining the weighting of source–destination pair, which is determined by the deadlines of SVC‐encoded multimedia streams, the queuing delay and channel conditions. The CLCAA then allocates transmission opportunities to source–destination pairs based on their weightings and game theory. We also conducted extensive simulations to demonstrate the efficiency of the CLCAA scheme. The simulation results show that the CLCAA scheme not only guarantees QoS for multimedia traffic but also achieves fairness across different streams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号