首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了满足水下运载体长航时、高精度、低成本的导航需要,提出由激光陀螺单轴旋转捷联惯性导航系统、计程仪、深度计、光纤陀螺捷联式重力仪和数字重力异常图组成的捷联式重力无源导航系统。运载体的位置由激光陀螺单轴旋转捷联惯性导航系统给出;光纤陀螺捷联式重力仪、计程仪和深度计组成水下捷联式重力测量系统,以激光陀螺单轴旋转捷联惯性导航系统提供的位置信息、计程仪提供的速度信息和深度计提供的水深信息作为观测量,应用扩展卡尔曼滤波计算出东、北、天坐标系下加速度计比力值,使用低通滤波实时获得重力值和重力异常值。根据存贮在计算机中的数字重力异常图,运用相关极值法,计算得到运载体位置。2019年底,捷联式重力无源导航系统进行了长时间船载试验,对该系统试验数据进行了离线处理。试验结果表明,在匹配海域内,运载体位置误差小于1个重力异常图格网大小。  相似文献   

2.
激光陀螺捷联惯性导航系统IMU误差标定   总被引:1,自引:0,他引:1       下载免费PDF全文
王建中 《压电与声光》2018,40(3):448-453
针对激光陀螺捷联惯性导航系统惯性测量单元(IMU)误差标定对转台精度、基座对北和调平要求较高,以及系统工作时激光陀螺抖动、长时间工作温度升高、算法复杂等因素,提出了以速度为观测量,采用以最小二乘拟合法的系统级标定法。通过三轴转台多位置测量:静止 转动 静止,快速辨识三轴激光陀螺和三轴加速度计正交安装误差、传感器零偏、刻度因子等24个误差参数,整个标定过程时间约2 h,多位置对准航向、横滚、俯仰测试精度优于0.012°。实验表明,采用该方法算法简单,操作过程便捷,可以有效提高激光陀螺捷联惯性导航系统IMU精度。  相似文献   

3.
在干涉式光纤陀螺组成的捷联惯性导航系统中,光纤陀螺启动过程中温变效应导致的漂移项是导航误差的主要误差源,已成为限制高精度光纤陀螺系统性能进一步提升的关键因素。通过对光纤陀螺启动过程中温变效应的理论分析与建模,提出了一种基于查表补偿的光纤陀螺启动温变效应误差抑制法和误差评价法。实验结果表明,该抑制方法可使-40~+60 ℃环境下光纤陀螺漂移概率误差从0.02~0.50 (°)/h降至0.01 (°)/h以下,对应导航系统的导航圆概率误差从1.4~35 n mile/h降至0.8 n mile/h以下,有效抑制了光纤陀螺启动温变效应误差,提升了系统性能。  相似文献   

4.
王建中 《压电与声光》2018,40(4):626-632
针对激光陀螺捷联惯性导航系统不依赖外部信息修正,长时间工作累积放大的问题,分析常用的零速修正算法二次曲线拟合法、最小二乘法、卡尔曼滤波法等,结合车载激光陀螺捷联惯性导航系统实际应用,提出一种自适应零速修正方法,利用零速修正技术的约束条件,构建15个基本误差参数,根据系统自身误差特性,设计出系统的状态量测矩阵和量测方程,并采用基于普条件数可观测理论对系统各状态进行了可观测性分析,确定卡尔曼滤波器参数,从而实现对位置坐标、姿态角、速度误差进行了有效估计,可以有效提高惯性测量单元(IMU)导航精度。实验表明,采用该方法能有效提高了捷联惯性导航系统导航精度,既克服了频繁停车,又增强了载体的机动性能。  相似文献   

5.
捷联惯性导航系统旋转调制技术研究   总被引:1,自引:1,他引:0  
捷联惯性导航系统的旋转调制技术是一种自校正方法,它能在不使用外部信息的条件下,自动补偿陀螺漂移和加速度计零偏引起的系统导航误差.该技术在国外潜艇和舰船上已得到成功应用,旋转捷联惯性导航系统的误差传播方程是研究旋转捷联惯导系统初始对准、系统级标定等的基础.基于此,推导了以地理坐标系为导航坐标系的单轴旋转捷联惯性导航系统的导航方程和误差传播方程(位置误差方程、速度误差方程、姿态误差方程),给出了误差传播的仿真结果.仿真表明,若采用单轴旋转调制技术,陀螺仪常值漂移和加速度计零偏引起的导航误差都可以得到有效补偿,而初始位置误差、速度误差及姿态误差引起的导航误差得不到补偿.将旋转调制技术应用于捷联惯导系统,能极大地提高武器系统的长期工作精度.  相似文献   

6.
机抖激光陀螺捷联惯导系统的温度补偿方法   总被引:1,自引:0,他引:1  
分析了系统温度对机抖激光陀螺捷联惯性导航系统的影响因素,介绍了降低和补偿捷联系统温度误差的4种方法.通过重复性温度实验,利用逐步回归法分析了激光陀螺零偏与温度的关系:通过多项式拟合,分别得到了加速度计的零偏、标度因子和IF转换电路的温度补偿模型,并在捷联系统中得到应用.对其中的两种方法进行了实验研究和导航测试,并对两种方法的补偿效果进行了对比.结果表明:通过温度实验得到惯性器件的温度补偿模型对其温度误差进行实时补偿是捷联系统最理想的补偿方法.补偿后系统定位测试1 h的圆概率误差(CEP)优于0.3 n mile/h.达到国内先进水平.  相似文献   

7.
针对石油、煤矿等特殊环境中对小型化捷联惯性导航系统的需求,设计并实现了基于现场可编程门阵列(FPGA)单芯片控制的微机电系统-惯性测量单元(MEMS_IMU)小型化捷联惯性导航系统。系统采用ADI公司的MEMS_IMU作为惯性器件,主控芯片使用Cyclone III系列FPGA,采用可编程片上系统(SOPC)工作模式,最终制成尺寸4cm×11cm的捷联惯导系统。系统实现了数据采集、误差补偿、导航解算以及与上位机通信等功能。实验结果表明,系统能满足在钻井等小尺寸测量环境中使用,连续姿态变换过程中姿态误差小于2°,实现稳定工作。  相似文献   

8.
角加速度误差是光纤陀螺的一项动态误差,该误差会引起光纤陀螺捷联惯导系统的姿态误差,制约捷联惯性导航系统在高动态应用条件下的精度。针对这种情况,在光纤陀螺闭环控制模型的基础上建立了闭环光纤陀螺的角加速度误差模型,并分析了影响角加速度误差的几项重要因素,包括控制回路总增益及控制周期等;随后给出了减小该误差的方法。基于等效输入原理,通过在反馈阶梯波上叠加斜坡信号,分别在不同条件下对闭环光纤陀螺的角加速度误差进行了测试实验。实验结果表明,不同角加速度和控制回路总增益条件下的角加速度误差测试值与理论计算值基本一致,验证了该误差模型的正确性。  相似文献   

9.
孙伟  初婧  李瑞豹  张媛 《压电与声光》2014,36(2):225-229
针对惯性测量单元(IMU)单轴旋转捷联惯导系统改善运载体导航精度能力有限的问题,同时从工程应用角度降低IMU连续长时间正反转引发旋转机构出现故障几率的角度出发,提出一种基于光纤陀螺的双轴转停方案。设计对称分布的双轴16次序转停路径并分析其误差调制原理;根据双轴旋转捷联惯导系统误差特性,研究IMU转停过程对系统导航精度的影响并计算最优转停时间间隔,利用仿真验证本方案的有效性。  相似文献   

10.
研究了APS星敏感器基于星光折射模型的自主测量轨道和全天球自主星图识别的测量姿态方法,阐述了光纤陀螺的测量模型.详细介绍了基于APS星敏感器与光纤陀螺的组合制导系统的原理,并给出了星光一惯性组合制导系统的轨道、姿态确定算法.依据APS星敏感器和光纤陀螺的技术指标,对算法进行了仿真,结果表明,该星光一惯性组合制导系统可以有效修正弹道导弹的初始定位误差及初始对准误差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号