首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In wireless sensor networks, scheduling the sleep duration of each node is one of the key elements for controlling critical performance metrics such as energy consumption and latency. Since the wakeup interval is a primary parameter for determining the sleeping schedule, how to tune the wakeup interval is crucial for the overall network performance. In this paper, we present an effective framework for tuning asynchronous wakeup intervals of IEEE 802.15.4 sensor networks from the energy consumption viewpoint. First, we derive an energy consumption model of each node as an explicit function of the wakeup interval, and empirically validate the derived model. Second, based on the proposed model, we formulate the problem of tuning the wakeup interval with the following two objectives: to minimize total energy consumption and to maximize network lifetime. We show that these two problems can be optimally solved by an iterative algorithm with global information by virtue of the convexity of the problem structure. Finally, as practical solutions, we further propose heuristic optimization algorithms that only exploit local information. In order to develop heuristic algorithms, we propose two broadcasting schemes, which are entitled as maximum wakeup interval broadcasting and efficient local maximum broadcasting. These broadcasting algorithms enable nodes in the network to have heterogeneous wakeup intervals.  相似文献   

2.
Distributed network utility maximization (NUM) is receiving increasing interests for cross‐layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time‐varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The shared-medium multihop nature of wireless ad hoc networks poses fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed in wireline networks are not applicable in the context of wireless ad hoc networks, due to their unique characteristics of location-dependent contention. In this paper, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. We further improve the algorithm toward asynchronous network settings and prove its convergence. Extensive simulations under a variety of network environments have been conducted to validate our theoretical claims.  相似文献   

4.
针对当前垂直切换判决算法存在的单一性,即切换判决时以用户或网络单方面为中心,没有充分考虑两者对切换判决的综合影响,导致垂直切换性能不佳的问题,该文提出一种基于双向匹配模型的垂直切换算法。该算法的主要思想是:首先分别以用户和网络为中心,设计各自的评估模型,用于评估双方对彼此的偏好顺序,并建立相应的排序值矩阵;其次利用排序值信息,基于一对多双向匹配模型对用户侧和网络侧的双向匹配行为进行建模和求解,以获得最优匹配解;最后根据最优匹配结果,进行垂直切换。仿真表明,该文设计的评估模型是合理的,并且所提出的算法能较好地兼顾用户侧的高性价比需求和网络侧的低阻塞率需求。  相似文献   

5.
In this paper, a Tabu search based routing algorithm is proposed to efficiently determine an optimal path from a source to a destination in wireless sensor networks (WSNs). There have been several methods proposed for routing algorithms in wireless sensor networks. In this paper, the Tabu search method is exploited for routing in WSNs from a new point of view. In this algorithm (TSRA), a new move and neighborhood search method is designed to integrate energy consumption and hop counts into routing choice. The proposed algorithm is compared with some of the ant colony optimization based routing algorithms, such as traditional ant colony algorithm, ant colony optimization-based location-aware routing for wireless sensor networks, and energy and path aware ant colony algorithm for routing of wireless sensor networks, in term of routing cost, energy consumption and network lifetime. Simulation results, for various random generated networks, demonstrate that the TSRA, obtains more balanced transmission among the node, reduces the energy consumption and cost of the routing, and extends the network lifetime.  相似文献   

6.
In ad hoc wireless networks, it is crucial to minimize power consumption while maintaining key network properties. This work studies power assignments of wireless devices that minimize power while maintaining k-fault tolerance. Specifically, we require all links established by this power setting be symmetric and form a k-vertex connected subgraph of the network graph. This problem is known to be NP-hard. We show current heuristic approaches can use arbitrarily more power than the optimal solution. Hence, we seek approximation algorithms for this problem. We present three approximation algorithms. The first algorithm gives an O(kalpha)-approximation where is the best approximation factor for the related problem in wired networks (the best alpha so far is O(log k)). With a more careful analysis, we show our second (slightly more complicated) algorithm is an O(k)-approximation. Our third algorithm assumes that the edge lengths of the network graph form a metric. In this case, we present simple and practical distributed algorithms for the cases of 2- and 3-connectivity with constant approximation factors. We generalize this algorithm to obtain an O(k2c+2)-approximation for general k-connectivity (2 les c les 4 is the power attenuation exponent). Finally, we show that these approximation algorithms compare favorably with existing heuristics. We note that all algorithms presented in this paper can be used to minimize power while maintaining -edge connectivity with guaranteed approximation factors. Recently, different set of authors used the notion of k-connectivity and the results of this paper to deal with the fault-tolerance issues for static wireless network settings.  相似文献   

7.
Given the inherent limitations of sensor nodes in wireless sensor networks (WSNs) such as energy limitation and since sensor nodes are distributed in harsh environments in the majority of WSN applications, the probability of their failure is high. Hence, nodes’ failure for any reason is regarded as a challenge for these networks which has a negative impact on the efficiency of the entire network. Consequently, for achieving appropriate performance in important applications, faulty nodes should be detected and removed from network. Detection of faulty nodes in these networks is considered to be an NP-hard problem. Thus, meta-heuristic algorithms are used for solving this problem. Given the significance of this issue, a model based on harmony search algorithm (HSA) is proposed in this paper for detecting faulty nodes. In this model, for doing so, each memory vector in the HSA includes energy and correlation between neighbor nodes data. The results of simulation indicated that the proposed model is more efficient than other methods and is able to optimize detection precision rate, packet delivery rate and remaining energy.  相似文献   

8.
A deep understanding of the structural properties of wireless networks is critical for evaluating the performance of network protocols and improving their designs. Many protocols for wireless networks—routing, topology control, information storage/retrieval and numerous other applications—have been based on the idealized unit-disk graph (UDG) network model. The significant deviation of the UDG model from many real wireless networks is substantially limiting the applicability of such protocols. A more general network model, the quasi unit-disk graph (quasi-UDG) model, captures much better the characteristics of wireless networks. However, the understanding of the properties of general quasi-UDGs has been very limited, which is impeding the designs of key network protocols and algorithms. In this paper, we present results on two important properties of quasi-UDGs: separability and the existence of power efficient spanners. Network separability is a fundamental property leading to efficient network algorithms and fast parallel computation. We prove that every quasi-UDG has a corresponding grid graph with small balanced separators that captures its connectivity properties. We also study the problem of constructing an energy-efficient backbone for a quasi-UDG. We present a distributed local algorithm that, given a quasi-UDG, constructs a nearly planar backbone with a constant stretch factor and a bounded degree. We demonstrate the excellent performance of these auxiliary graphs through simulations and show their applications in efficient routing.  相似文献   

9.
Energy consumption is one of the most important design constraints when building a wireless sensor and actuator network since each device in the network has a limited battery capacity, and prolonging the lifetime of the network depends on saving energy. Overcoming this challenge requires a smart and reconfigurable network energy management strategy. The Software‐Defined Networking (SDN) paradigm aims at building a flexible and dynamic network structure, especially in wireless sensor networks. In this study, we propose an SDN‐enabled wireless sensor and actuator network architecture that has a new routing discovery mechanism. To build a flexible and energy‐efficient network structure, a new routing decision approach that uses a fuzzy‐based Dijkstra's algorithm is developed in the study. The proposed architecture can change the existing path during data transmission, which is the key property of our model and is achieved through the adoption of the SDN approach. All the components and algorithms of the proposed system are modeled and simulated using the Riverbed Modeler software for more realistic performance evaluation. The results indicate that the proposed SDN‐enabled structure with fuzzy‐based Dijkstra's algorithm outperforms the one using the regular Dijkstra's and the ZigBee‐based counterpart, in terms of the energy consumption ratio, and the proposed architecture can provide an effective cluster routing while prolonging the network lifetime.  相似文献   

10.
In an ad-hoc network, mobile stations communicate with each other using multi-hop wireless links. There is no stationary infrastructure such as base stations. Each node in the network also acts as a router, forwarding data packets for other nodes. In this architecture, mobile stations have a multi-hop path, via other mobile stations acting as intermediaries or relays, to indirectly forward packets from source to destination. Adjusting the transmitted power is extremely important in ad-hoc networks due to at least the following reasons. The transmitted power of the radio terminals determines the network topology. The network topology in turn has considerable impact on the throughput (fraction of packets, sent by a source, and successfully received at the receiver) performance of the network. The need for power efficiency must be balanced against the lifetime of each individual node and the overall life of the network. Power control problem can be classified in one of three categories. The first class comprises of strategies to find an optimal transmitted power to control the connectivity properties of the network. The second class of approaches could be called power aware routing. Most schemes use some shortest path algorithm with a power based metric, rather than a hop count based metric. The third class of approaches aim at modifying the mac layer. We use distributed power control algorithms initially proposed for cellular networks. We establish a classification of power control algorithms for wireless ad-hoc networks. We evaluate these algorithms in anIeee 802.11b multi-hop wireless ad-hoc LAN environment. Results show the advantage of power control in maximizing signal-to-interference ratio and minimizing transmitted power.  相似文献   

11.
This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control(MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization(NUM)problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.  相似文献   

12.
如何实现节能和减小延迟一直是无线传感器网络中研究的热点及难点问题。提出一种新的最小化延迟的能量均衡的节点调度(MDS)算法,算法通过对能量以及延迟的分析计算,计算出节点的能量判定阈值,并在选择下一跳的时候,总是选择节点剩余能量在限定范围内且延迟最小的节点,以此实现最小化网络延迟的目的。理论分析及实验结果表明,MDS算法能够较好地把网络的生命周期控制在可接受范围内,同时可以解决在能耗限定条件下的最小化延迟的问题。  相似文献   

13.
无线网络中的分组调度算法   总被引:8,自引:1,他引:7  
宋舰  李乐民 《通信学报》2003,24(3):42-48
探讨了将有线网络的分组调度算法引入无线网络需要改进的事项,分析了公平排队算法,建立了一个基本的无线分组调度模型,并综述了一些目前存在的无线分组调度算法。  相似文献   

14.
Topology control is an efficient strategy for improving the performance of wireless ad hoc and sensor networks by building network topologies with desirable features. In this process, location information of nodes can be used to improve the performance of a topology control algorithm and also ease its operations. Many location‐based topology control algorithms have been proposed. In this paper, we propose two location‐assisted grid‐based topology control (GBP) algorithms. The design objective of our algorithm is to effectively reduce the number of active nodes required to keep global network connectivity. In grid‐based topology control, a network is divided into equally spaced squares (called grids). We accordingly design cross‐sectional topology control algorithm and diagonal topology control algorithm based on different network parameter settings. The key idea is to build near‐minimal connected dominating set for the network at the grid level. Analytical and simulation results demonstrate that our designed algorithms outperform existing work. Furthermore, the diagonal algorithm outperforms the cross‐sectional algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Topology control plays an important role in the design of wireless ad hoc and sensor networks and has demonstrated its high capability in constructing networks with desirable characteristics such as sparser connectivity, lower transmission power, and smaller node degree. However, the enforcement of a topology control algorithm in a network may degrade the energy‐draining balancing capability of the network and thus reduce the network operational lifetime. For this reason, it is important to take into account energy efficiency in the design of a topology control algorithm in order to achieve prolonged network lifetime. In this paper, we propose a localized energy‐efficient topology control algorithm for wireless ad hoc and sensor networks with power control capability in network nodes. To achieve prolonged network lifetime, we introduce a concept called energy criticality avoidance and propose an energy criticality avoidance strategy in topology control and energy‐efficient routing. Through theoretical analysis and simulation results, we prove that the proposed topology control algorithm can maintain the global network connectivity with low complexity and can significantly prolong the lifetime of a multi‐hop wireless network as compared with existing topology control algorithms with little additional protocol overhead. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
对于无线多跳网络跨层资源分配算法的研究大多是建立在假定每个节点能获得网络中其他节点的完美的信道状态信息(CSI)的基础上。但是由于信道的时变特性和CSI的反馈延时,在动态变化较快的无线网络中,节点所获得的CSI很可能是过时或者部分过时的。基于这个前提,该文首次在动态无线多跳网络跨层资源优化分配算法中考虑了CSI这种变化的影响,并提出了一种相应的分布式联合拥塞控制和功率分配算法。仿真结果证明该算法能够极大地提高网络效用和能量效用。  相似文献   

17.
Admission control for QoS support in heterogeneous 4G wireless networks   总被引:2,自引:0,他引:2  
《IEEE network》2008,22(3):30-37
Admission control plays a very important role in wireless systems, as it is one of the basic mechanisms for ensuring the quality of service offered to users. Based on the available network resources, it estimates the impact of adding or dropping a new session request. In both 2G and 3G systems, admission control refers to a single network. As we are moving towards heterogeneous wireless networks referred to as systems beyond 3G or 4G, admission control will need to deal with many heterogeneous networks and admit new sessions to a network that is most appropriate to supply the requested QoS. In this article we present the fundamentals of access-network-based admission control, an overview of the existing admission control algorithms for 2G and 3G networks, and finally give the design of a new admission control algorithm suitable for future 4G networks and specifically influenced by the objectives of the European WINNER project.  相似文献   

18.
Due to recent advances in wireless communication technologies, there has been a rapid growth in wireless sensor networks research during the past few decades. Many novel architectures, protocols, algorithms, and applications have been proposed and implemented. The efficiency of these networks is highly dependent on routing protocols directly affecting the network life-time. Clustering is one of the most popular techniques preferred in routing operations. In this paper, a novel energy efficient clustering mechanism, based on artificial bee colony algorithm, is presented to prolong the network life-time. Artificial bee colony algorithm, simulating the intelligent foraging behavior of honey bee swarms, has been successfully used in clustering techniques. The performance of the proposed approach is compared with protocols based on LEACH and particle swarm optimization, which are studied in several routing applications. The results of the experiments show that the artificial bee colony algorithm based clustering can successfully be applied to WSN routing protocols.  相似文献   

19.
One of the infrastructure-free networks is mobile ad hoc networks (MANETs) that are built with limited battery life using wireless mobile devices. This restricted battery capability in MANETs creates the necessity of considering the energy-awareness constraint in designing them. As routing protocols, the major aim of MANETs is to create the energy awareness in the network; it improves the network's lifetime through effectively utilizing the available restricted energy. Moreover, it creates some limitations like the mobility constraint, wireless link's sensitivity to environmental impacts, and restricted transmission range and residual energy of nodes that causes rapid modifications in the network topology and frequent link failure. By taking those problems, this paper plans to develop a new multipath routing protocol, where the hybrid optimization algorithm with the integration of cuckoo search optimization (CSO) and butterfly optimization algorithm (BOA) is proposed and named sensory modality-based cuckoo search butterfly optimization (SM-CSBO) for determining the optimal path between the source and destination. The main goal is to select the path with better link quality and more stable links to guarantee reliable data transmission. The multi-objective function is considered with the factors regarding distance, normalized energy, packet delivery ratio, and control overhead to develop an effective routing protocol in MANET. The proposed model of SM-CSBO algorithm has superior than 5.8%, 30.4%, 36.7%, and 39.3%, correspondingly maximized than PSO, SFO, CSO, and SFO algorithms while considering the number of nodes as 150. The simulation outcomes proved that it enhances network performance when compared with the other traditional protocols.  相似文献   

20.
Failure-resilient wireless networks have attracted the interest of the research community and have been an open area of concern in the studies of wireless network in recent years. Accordingly, different research on restoration techniques have been carried out to proffer solution to the network component failures. In the same vein, this article proposes a hybridized enhanced genetic algorithm and ant colony system (EGAACS) survivability model, which can instantly resolve node–link failure problems, thus improving the quality of service of the wireless network. The EGAACS is a hybrid model that combines the principles of the enhanced genetic algorithm (EGA) and ant colony system (ACS) models to form a capacity efficiency solution that outperforms the ACS and EGA models in terms of path cost and transmission delay. The resilience of this proposed EGAACS model is verified for different wireless network sizes (20, 30, 40, and 50 node networks). Simulation results show that the proposed EGAACS model generates the best close to optimal paths in terms of the path cost and transmission delay in comparison to the EGA and ACS models. In fact, the performance of the proposed EGAACS model is more conspicuous as the size of the network increases. More importantly, the proposed EGAACS model is suitable for real-time wireless network as it exhibits moderate computational time complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号