首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the preparation of a dendrimer that is solution‐processible and contains 2‐ethylhexyloxy surface groups, biphenyl‐based dendrons, and a fac‐tris[2‐(2,4‐difluorophenyl)pyridyl]iridium(III ) core. The homoleptic complex is highly luminescent and the color of emission is similar to the heteroleptic iridium(III ) complex, bis[2‐(2,4‐difluorophenyl)pyridyl]picolinate iridium(III ) (FIrpic). To avoid the change in emission color that would arise from attaching a conjugated dendron to the ligand, the conjugation between the dendron and the ligand is decoupled by separating them with an ethane linkage. Bilayer devices containing a light‐emitting layer comprised of a 30 wt.‐% blend of the dendrimer in 1,3‐bis(N‐carbazolyl)benzene (mCP) and a 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene electron‐transport layer have external quantum and power efficiencies, respectively, of 10.4 % and 11 lm W–1 at 100 cd m–2 and 6.4 V. These efficiencies are higher than those reported for more complex device structures prepared via evaporation that contain FIrpic blended with mCP as the emitting layer, showing the advantage of using a dendritic structure to control processing and intermolecular interactions. The external quantum efficiency of 10.4 % corresponds to the maximum achievable efficiency based on the photoluminescence quantum yield of the emissive film and the standard out‐coupling of light from the device.  相似文献   

2.
A novel host material containing silicon‐cored spirobifluorene derivative (SBP‐TS‐PSB), is designed, synthesized, and characterized for red phosphorescent organic light‐emitting diodes (OLEDs). The SBP‐TS‐PSB has excellent thermal and morphological stabilities and exhibits high electroluminescence (EL) efficiency as a host for the red phosphorescent OLEDs. The electrophosphorescence properties of the devices using SBP‐TS‐PSB as the host and red phosphorescent iridium (III) complexes as the emitter are investigated and these devices exhibit higher EL performances compared with the reference devices with 4,4′‐N,N′‐dicarbazole‐biphenyl (CBP) as a host material; for example, a (piq)2Ir(acac)‐doped SBP‐TS‐PSB device shows maximum external quantum efficiency of ηext = 14.6%, power efficiency of 10.3 lm W?1 and Commission International de L'Eclairage color coordinates (0.68, 0.32) at J = 1.5 mA cm?2, while the device with the CBP host shows maximum ηext = 12.1%. These high performances can be mainly explained by efficient triplet energy transfer from the host to the guests and improved charge balance attributable to the bipolar characteristics of the spirobifluorene group.  相似文献   

3.
Highly efficient blue electrophosphorescent organic light‐emitting diodes incorporating a bipolar host, 2,7‐bis(diphenylphosphoryl)‐9‐[4‐(N,N‐diphenylamino)phenyl]‐9‐phenylfluorene (POAPF), doped with a conventional blue triplet emitter, iridium(III) bis[(4,6‐difluoro‐phenyl)pyridinato‐N,C]picolinate (FIrpic) are fabricated. The molecular architecture of POAPF features an electron‐donating (p‐type) triphenylamine group and an electron‐accepting (n‐type) 2,7‐bis(diphenyl‐phosphoryl)fluorene segment linked through the sp3‐hybridized C9 position of the fluorene unit. The lack of conjugation between these p‐ and n‐type groups endows POAPF with a triplet energy gap (ET) of 2.75 eV, which is sufficiently high to confine the triplet excitons on the blue‐emitting guest. In addition, the built‐in bipolar functionality facilitates both electron and hole injection. As a result, a POAPF‐based device doped with 7 wt% FIrpic exhibits a very low turn‐on voltage (2.5 V) and high electroluminescence efficiencies (20.6% and 36.7 lm W?1). Even at the practical brightnesses of 100 and 1000 cd m?2, the efficiencies remain high (20.2%/33.8 lm W?1 and 18.8%/24.3 lm W?1, respectively), making POAPF a promising material for use in low‐power‐consumption devices for next‐generation flat‐panel displays and light sources.  相似文献   

4.
The exciplex forming co‐host with phosphorescent dopant system has potential to realize highly efficient phosphorescent organic light emitting didoes (PhOLEDs). However, the exciplex forming co‐host for blue phosphorescent OLEDs has been rarely introduced because of higher triplet level of the blue dopant than green and red dopants. In this work, a novel exciplex forming co‐host with high triplet energy level is developed by mixing a phosphine oxide based electron transporting material, PO‐T2T, and a hole transporting material, N,N′‐dicarbazolyl‐3,5‐benzene (mCP). Photo‐physical analysis shows that the exciplexes are formed efficiently in the host and the energy transfer from the exciplex to blue phosphorescent dopant (iridium(III)bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate; FIrpic) is also efficient, enabling the triplet harvest without energy loss. As a result, an unprecedented high performance blue PhOLED with the exciplex forming co‐host is demonstrated, showing a maximum external quantum efficiency (EQE) of 30.3%, a maximum power efficiency of 66 lm W?1, and low driving voltage of 2.75 at 100 cd m?2, 3.29 V at 1000 cd m?2, and 4.65 V at 10 000 cd m?2, respectively. The importance of the exciton confinement in the exciplex forming co‐host is further investigated which is directly related to the performance of PhOLEDs.  相似文献   

5.
Three triphenyl benzene derivatives of 1,3,5‐tri(m‐pyrid‐2‐yl‐phenyl)benzene (Tm2PyPB), 1,3,5‐tri(m‐pyrid‐3‐yl‐phenyl)benzene (Tm3PyPB) and 1,3,5‐tri(m‐pyrid‐4‐yl‐phenyl)benzene (Tm4PyPB), containing pyridine rings at the periphery, are developed as electron‐transport and hole/exciton‐blocking materials for iridium(III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic)‐based blue phosphorescent organic light‐emitting devices. Their highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO) energy levels decrease as the nitrogen atom of the pyridine ring moves from position 2 to 3 and 4; this is supported by both experimental results and density functional theory calculations, and gives improved electron‐injection and hole‐blocking properties. They exhibit a high electron mobility of 10?4–10?3 cm2 V?1 s?1 and a high triplet energy level of 2.75 eV. Confinement of FIrpic triplet excitons is strongly dependent on the nitrogen atom position of the pyridine ring. The second exponential decay component in the transient photoluminescence decays of Firpic‐doped films also decreases when the position of the nitrogen atom in the pyridine ring changes. Reduced driving voltages are obtained when the nitrogen atom position changes because of improved electron injection as a result of the reduced LUMO level, but a better carrier balance is achieved for the Tm3PyPB‐based device. An external quantum efficiency (EQE) over 93% of maximum EQE was achieved for the Tm4PyPB‐based device at an illumination‐relevant luminance of 1000 cd m?2, indicating reduced efficiency roll‐off due to better confinement of FIrpic triplet excitons by Tm4PyPB in contrast to Tm2PyPB and Tm3PyPB.  相似文献   

6.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

7.
Several new solution‐processable organic semiconductors based on dendritic oligoquinolines were synthesized and were used as electron‐transport and hole‐blocking materials to realize highly efficient blue phosphorescent organic light‐emitting diodes (PhOLEDs). Various substitutions on the quinoline rings while keeping the central meta‐linked tris(quinolin‐2‐yl)benzene gave electron transport materials that combined wide energy gap (>3.3 eV), moderate electron affinity (2.55‐2.8 eV), and deep HOMO energy level (<‐6.08 eV) with electron mobility as high as 3.3 × 10?3 cm2 V?1 s?1. Polymer‐based PhOLEDs with iridium (III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic) blue triplet emitter and solution‐processed oligoquinolines as the electron‐transport layers (ETLs) gave luminous efficiency of 30.5 cd A?1 at a brightness of 4130 cd m?2 with an external quantum efficiency (EQE) of 16.0%. Blue PhOLEDs incorporating solution‐deposited ETLs were over two‐fold more efficient than those containing vacuum‐deposited ETLs. Atomic force microscopy imaging shows that the solution‐deposited oligoquinoline ETLs formed vertically oriented nanopillars and rough surfaces that enable good ETL/cathode contacts, eliminating the need for cathode interfacial materials (LiF, CsF). These solution‐processed blue PhOLEDs have the highest performance observed to date in polymer‐based blue PhOLEDs.  相似文献   

8.
A new class of charge neutral, strongly luminescent cyclometalated platinum(II) complexes supported by dianionic tetradentate ligand are synthesized. One of these platinum(II) complexes, Y‐Pt , displays a high photoluminescence quantum yield of 86% and electroluminescence efficacy (ηpower) of up to 52 lm W?1, and is utilized as a yellow phosphorescent dopant in the fabrication of white organic light‐emitting devices (WOLEDs). WOLEDs based on conventional structures with yellow emission from Y‐Pt in combination with blue emission from bis(4,6‐difluorophenyl‐pyridinato‐N,C2′) (picolinate) iridium(III) (FIrpic) show a total ηpower of up to 31 lm W?1. A two‐fold increase in ηpower by utilizing a modified WOLED structure comprising of a composite blue host is realized. With this modified device structure, the total ηpower and driving voltage at a luminance of 1000 cd m?2 can be improved to 61 lm W?1 and 7.5 V (i.e., 10 V for control devices). The performance improvement is attributed to an effectively broaden exciton formation‐recombination zone and alleviation of localized exciton accumulation within the FIrpic‐doped composite host for reduced triplet‐triplet annihilation, yielding blue light‐emission with enhanced intensity. The modified device structure can also adopt a higher concentration of Y‐Pt towards its optimal value, leading to WOLEDs with high efficiency.  相似文献   

9.
A sensitization‐based cascade energy transfer channel is proposed to boost the electroluminescent performances of the solution‐processed near‐infrared organic light‐emitting devices (OLEDs) featuring an electroluminescent peak of 786 nm from a new fluorescent emitter of N4,N4,N9,N9‐tetra‐p‐tolylnaphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diamine (NZ2mDPA) with unique aggregation‐induced emission (AIE) property. The optimized device is composed of 4,4′‐N,N‐dicarbazole‐biphenyl (CBP) as the host, bis(2‐phenyl‐1,3‐benzothiozolato‐N,C2′)iridium (Ir(bt)2(acac)) as the sensitizer, and NZ2mDPA as the emitter, where the cascade energy transfer can occur via two steps realizing unexpected triplet–singlet energy transfer by the Förster mechanism. The first step features efficient triplet harvesting from CBP to Ir(bt)2(acac), and then the second step involves in resonant energy transfer from the phosphorescent sensitizer to the near‐infrared AIE emitter of NZ2mDPA, which finally endows two channels of harvesting singlet and triplet excitons. The unique scheme achieves not only more efficient Förster energy transfer but also the higher utilization efficiency of triplet excitons. As a result, the near‐infrared OLEDs can realize a factor of 2.7 enhancement of external quantum efficiency by employing the phosphor‐sensitized AIE lumogen compared with the commonly used binary host–guest system.  相似文献   

10.
We have synthesized a new blue‐emitting iridium complex, FIrpytz (iridium(III) bis(4,6‐difluorophenylpyridinato)‐4‐(pyridin‐2‐yl)‐1,2,3‐triazolate), and two new bis(triphenylsilyl) derivatives, BSB (4,4'‐bis‐triphenylsilanyl‐biphenyl) and BST (4,4″‐bis(triphenylsilanyl)‐(1,1′,4′,1″)‐terphenyl) as hosts for blue phosphorescence devices. The photoluminescence (PL) and electroluminescence (EL) properties of different host/dopant combinations were studied in details. These two arylsilanes showed glass transition temperatures (Tgs) ≥ 100 °C higher than those of UGH1 (diphenyl‐di(o‐tolyl)silane) and UGH2 (1,4‐bis(triphenylsilyl)benzene), the common arylsilane‐based hosts. The band gaps for BSB and BST are 4.16 and 3.78 eV, respectively, lower than that of UGH2 of 4.40 eV. The FIrpytz‐doped UGH2, BSB and BST films exhibit PL quantum yields of 0.58, 0.83 and 0.48, respectively. The EL devices using FIrpytz or FIrpic (iridium(III) bis(4,6‐difluorophenylpyridinato)‐picolinate) as the blue phosphorescence dopants and UGH2, BSB and BST as the hosts also showed that BSB‐based devices gave the best device efficiencies. Both PL and EL studies show that BSB is better than UGH2 and BST as the host material for FIrpytz and FIrpic. In particular, the use of FIrpytz as dopant, BSB as host and LiF/Al as cathode provides a remarkably efficient combination for blue electrophosphorescence device reaching a very high external quantum efficiency of 19.3% at 8.5 V and a high luminance level of 20500 cd m−2 at 19.3 V after electroluminescence started at 5.1 V.  相似文献   

11.
Deep‐blue fluorescent compounds are particularly important in organic light‐emitting devices (OLEDs). A donor–accepotor (DA)‐type blue‐emitting compound, 1‐(10‐(4‐methoxyphenyl)anthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)benzene ( BD3 ), is synthesized, and for comparison, a nonDA‐type compound, 1,4‐bis(10‐phenylanthracene‐9‐yl)benzene ( BD1 ) and a weak DA‐type compound, 1‐(10‐phenylanthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)‐benzene ( BD2 ), are also synthesized. The twisted conformations of the two anthracene units in the compounds, confirmed by single crystal X‐ray analysis, effectively prevent π‐conjugation, and the compound shows deep‐blue photoluminescence (PL) with a high PL quantum efficiency, almost independent of the solvent polarity, resulting from the absence of an intramolecular charge transfer state. The DA‐type molecule BD3 in a non‐doped device exhibits a maximum external quantum efficiency (EQE) of 4.2% with a slight roll‐off, indicating good charge balance due to the DA‐type molecular design. In the doped device with 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP) host, the BD3 exhibits higher EQE than 10% with Commission International de L'Eclairge (CIE) coordinates of (0.15, 0.06) and a narrow full‐width at half‐maximum of 45 nm, which is close to the CIE of the high definition television standard blue.  相似文献   

12.
Recently, bipolar host materials are the most promising candidates for achieving high performance phosphorescent organic light‐emitting diodes (PHOLEDs) in order to maximize recombination efficiency. However, the development of host material with high triplet energy (E T) is still a great challenge to date to overcome the limitations associated with the present PHOLEDs. Herein, a highly efficient donor‐π‐acceptor (D‐π‐A) type bipolar host (4′‐(9H‐carbazol‐9‐yl)‐2,2′‐dimethyl‐[1,1′‐biphenyl]‐4‐yl)diphenylphosphine oxide (m‐CBPPO) comprising of carbazole, 2,2′‐dimethylbiphenyl and diphenylphosphoryl as D‐π‐A unit, respectively, is developed. Interestingly, a high E T of 3.02 eV is observed for m‐CBPPO due to highly twisted conformation. Furthermore, the new host material is incorporated in PHOLEDs as emissive layer with a new carbene type Ir(cb)3 material as a deep‐blue emitter. The optimized devices show an excellent external quantum efficiency (EQE) of 24.8% with a notable Commission internationale de l'éclairage (x, y) ≤ 0.15, (0.136, 0.138) and high electroluminescence performance with extremely low efficiency roll‐off. Overall, the above EQE is the highest reported for deep‐blue PHOLEDs with very low efficiency roll‐off and also indicate the importance of appropriate host for the development of high performance deep‐blue PHOLEDs.  相似文献   

13.
Intermolecular interactions play a crucial role in the performance of organic light‐emitting diodes (OLEDs). Here we report the photophysical and electroluminescence properties of a fac‐tris(2‐phenylpyridyl)iridium(III ) cored dendrimer in which highly branched biphenyl dendrons are used to control the intermolecular interactions. The presence of fluorene surface groups improves the solubility and enhances the efficiency of photoluminescence, especially in the solid state. The emission peak of the dendrimer is around 530 nm with a PL quantum yield of 76 % in solution and 25 % in a film. The photophysical properties of this dendrimer are compared with a similar dendrimer with the same structure but without the fluorene surface groups. Dendrimer LEDs (DLEDs) are prepared using each dendrimer as a phosphorescent emitter blended in a 4,4′‐bis(N‐carbazolyl)biphenyl host. Device performance is improved significantly by the incorporation of an electron‐transporting layer of 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene. A peak external quantum efficiency of 10 % (38 Cd A–1) for the dendrimer without surface groups and 13 % (49.8 Cd A–1) for the dendrimer with fluorene surface groups is achieved in the bilayer LEDs.  相似文献   

14.
The host materials designed for highly efficient white phosphorescent organic light‐emitting diodes (PhOLEDs) with power efficiency (PE) >50 lm W‐1 and low efficiency roll‐off are very rare. In this work, three new indolocarbazole‐based materials (ICDP, 4ICPPy, and 4ICDPy) are presented composed of 6,7‐dimethylindolo[3,2‐a]carbazole and phenyl or 4‐pyridyl group for hosting blue, green, and red phosphors. Among this three host materials, 4ICDPy‐based devices reveal the best electroluminescent performance with maximum external quantum efficiencies (EQEs) of 22.1%, 27.0%, and 25.3% for blue (FIrpic), green (fac‐Ir(ppy)3), and red ((piq)2Ir(acac)) PhOLEDs. A two‐color and single‐emitting‐layer white organic light‐emitting diode hosted by 4ICDPy with FIrpic and Ir(pq)3 as dopants achieves high EQE of 20.3% and PE of 50.9 lm W?1 with good color stability; this performance is among the best for a single‐emitting‐layer white PhOLEDs. All 4ICDPy‐based devices show low efficiency roll‐off probably due to the excellent balanced carrier transport arisen from the bipolar character of 4ICDPy.  相似文献   

15.
The authors report a small molecule host of 2,7-bis(diphenylphosphoryl)-9-[4-(N,N-diphenylamino)phenyl]-9-phenylfluorene (POAPF) doped with 8 wt% iridium(III)-bis[(4,6-difluorophenyl)pyridinato-N,C2′]picolinate (FIrpic) for use in efficient and single-layer blue phosphorescent organic light-emitting diodes (PHOLEDs) exhibiting a maximum external quantum efficiency of ∼20.3% at brightness of 100 cd/m2. The high performance of such single layer PHOLEDs is attributed to the POAPF host’s high morphological stability, suitable triplet energy level, and equal charge carrier mobilities of hole and electron to form the broad carrier recombination zone in the emitting layer, thus reducing the triplet-triplet annihilation and resulting in a slight efficiency roll off of 0.5% from the brightness of 1 and 1000 cd/m2. This work also systematically investigated the arrangement of the POAPF:FIrpic recombination zone for optimizing the performance of the single layer PHOLED.  相似文献   

16.
We investigated the light‐emitting performances of blue phosphorescent organic light‐emitting diodes, known as PHOLEDs, by incorporating an N,N’‐dicarbazolyl‐3,5‐benzen interlayer between the hole transporting layer and emitting layer (EML). We found that the effects of the introduced interlayer for triplet exciton confinement and hole/electron balance in the EML were exceptionally dependent on the host materials: 9‐(4‐tert‐butylphenyl)‐3.6‐bis(triphenylsilyl)‐9H‐carbazole, 9‐(4‐tert‐butylphenyl)‐3.6‐ditrityl‐9H‐carbazole, and 4,4’‐bis‐triphenylsilanyl‐biphenyl. When an appropriate interlayer and host material were combined, the peak external quantum efficiency was greatly enhanced by over 21 times from 0.79% to 17.1%. Studies on the recombination zone using a series of host materials were also conducted.  相似文献   

17.
A series of pyridine‐containing electron‐transport materials are developed as an electron‐transport layer for the FIrpic‐based blue phosphorescent organic light‐emitting diodes. Their energy levels can be tuned by the introduction of pyridine rings in the framework and on the periphery of the molecules. Significantly reduced operating voltage is achieved without compromising external quantum efficiency by solely tuning the nitrogen atom orientations of those pyidine rings. Unprecedented low operating voltages of 2.61 and 3.03 V are realized at 1 and 100 cd m?2, giving ever highest power efficiency values of 65.8 and 59.7 lm W?1, respectively. In addition, the operating voltages at 100 cd m?2 can be further reduced to 2.70 V by using a host material with a small singlet‐triplet exchange energy, and the threshold voltage for electroluminescence can even be 0.2–0.3 V lower than the theoretical minimum value of the photon energy divided by electron charge. Aside from the reduced operating voltage, a further reduced roll‐off in efficiency is also achieved by the combination of an appropriate host material.  相似文献   

18.
The photoluminescence (PL) efficiency of emitters is a key parameter to accomplish high electroluminescent performance in phosphorescent organic light‐emitting diodes (PhOLEDs). With the aim of enhancing the PL efficiency, this study designs deep‐blue emitting heteroleptic Ir(III) complexes (tBuCN‐FIrpic, tBuCN‐FIrpic‐OXD, and tBuCN‐FIrpic‐mCP) for solution‐processed PhOLEDs by covalently attaching the light‐harvesting functional moieties (mCP‐Me or OXD‐Me) to the control Ir(III) complex, tBuCN‐FIrpic. These Ir(III) complexes show similar deep‐blue emission peaks around 453, 480 nm (298 K) and 447, 477 nm (77 K) in chloroform. tBuCN‐FIrpic‐mCP demonstrates higher light‐harvesting efficiency (142%) than tBuCN‐FIrpic‐OXD (112%), relative to that of tBuCN‐FIrpic (100%), due to an efficient intramolecular energy transfer from the mCP group to the Ir(III) complex. Accordingly, the monochromatic PhOLEDs of tBuCN‐FIrpic‐mCP show higher external quantum efficiency (EQE) of 18.2% with one of the best blue coordinates (0.14, 0.18) in solution‐processing technology. Additionally, the two‐component (deep‐blue:yellow‐orange), single emitting layer, white PhOLED of tBuCN‐FIrpic‐mCP shows a maximum EQE of 20.6% and superior color quality (color rendering index (CRI) = 78, Commission Internationale de L'Eclairage (CIE) coordinates of (0.353, 0.352)) compared with the control device containing sky‐blue:yellow‐orange emitters (CRI = 60, CIE coordinates of (0.293, 0.395)) due to the good spectral coverage by the deep‐blue emitter.  相似文献   

19.
The temperature dependence of luminescence from [Cu(dnbp)(DPEPhos)]BF4 (dnbp = 2,9‐di‐n‐butylphenanthroline, DPEPhos = bis[2‐(diphenylphosphino)phenyl]ether) in a poly(methyl methacrylate) (PMMA) film indicates the presence of long‐life green emission arising from two thermally equilibrated charge transfer (CT) excited states and one non‐equilibrated triplet ligand center (3LC) excited state. At room temperature, the lower triplet CT state is found to be the predominantly populated excited state, and the zero‐zero energy of this state is found to be 2.72 eV from the onset of its emission at 80 K. The tunable emission maximum of [Cu(dnbp)(DPEPhos)]BF4 in various hosts with different triplet energies is explained in terms of the multiple triplet energy levels of this complex in amorphous films. Using the high triplet energy charge transport material as a host and an exciton‐blocking layer (EBL), a [Cu(dnbp)(DPEPhos)]BF4 based organic light‐emitting diode (OLED) achieves a high external quantum efficiency (EQE) of 15.0%, which is comparable to values for similar devices based on Ir(ppy)3 and FIrpic. The photoluminescence (PL) and electroluminescence (EL) performance of green emissive [Cu(μI)dppb]2 (dppb = 1,2‐bis[diphenylphosphino]benzene) in organic semiconductor films confirmed its 3CT state with a zero‐zero energy of 2.76 eV as the predominant population excited state.  相似文献   

20.
Highly efficient thermally activated delayed fluorescence (TADF) devices are developed by engineering mixed host materials in the emitting layer. Mixed hosts with deep highest occupied molecular orbital and high singlet energy without any exciplex formation are ideal as the host material for the TADF organic light‐emitting diodes. A high external quantum efficiency of 28.6% is achieved in the green TADF organic light‐emitting diodes using a mixed host of 1,3‐bis(N‐carbazolyl)benzene:1,3,5‐tri[(3‐pyridyl)‐phen‐3‐yl]benzene and green emitting (4s,6s)‐2,4,5,6‐tetra(9H‐carbazol‐9‐yl)isophthalonitrile TADF emitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号