首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report room-temperature measurements of the mid- and far-IR absorption throughout the 400 – 4000 cm?1 and 10 – 700 cm?1 spectral ranges and the resistivity of layered p-GaSe and p-TlInS2 intercalated with Li+. Intercalation was performed by immersing Bridgman grown crystals in 0.5 M solutions of LiCl in distilled water at ambient conditions. The crystal structure and the stoichiometry of the grown crystals were determined by X-ray diffraction and XRF methods. It is shown that intercalation does not change the frequency of the IR-, and Raman active low-frequency“rigid layer” mode (GaSe), the space symmetry group or the lattice parameters of the crystals. It was found that for both crystals, the resistivity versus time dependencies are nearly the same. Three ranges in the resistivity-intercalation time dependencies were explained qualitatively. The resistivity increase due to intercalation was explained by assuming that the intercalated lithium ions act as ionized donors and compensate the host p-type crystal. The highest degree of compensation for GaSe and TlInS2 crystals was achieved after intercalation during 12 and 10 days, respectively.  相似文献   

2.
For the anisotropic PbSb2Te4 single crystal with a high hole concentration (p ≈ 3 × 1020 cm–3) and high conductivity (σ ≈ 2500 Ω–1 cm–1), the reflectance spectrum for a cleavage plane orthogonal to the trigonal axis C3 is recorded in a wide spectral range from 50 to 50000 cm–1. It is shown that, in the long-wavelength and mid-infrared regions, the reflectance can be described with consideration for the contribution of plasma vibrations and two crystal-lattice vibrations. The quantitative characteristics of these vibrations are determined. The characteristics are in satisfactory agreement with the electrical parameters. The discrepancies between the values of the hole effective mass calculated by different methods are attributed to the complex structure of the crystal’s valence band.  相似文献   

3.
The results obtained in a study of the frequency and temperature dependences of the ac electrical conductivity of FeIn2Se4 single crystals are presented. It is found that the law σ ~ f S (0.1 ≤ S ≤ 1.0) is obeyed for electrical conductivity in the 295–375 K temperature range at frequencies of 2 × 104–106 Hz. It shown that the frequency dependence of the conductivity in an FeIn2Se4 single crystal can be accounted for in terms of the multiplet model, and, consequently, the conductivity in these single crystals is characterized by the band-hopping mechanism.  相似文献   

4.
The properties of protective dielectric layers of aluminum oxide Al2O3 applied to prefabricated silicon-nanowire transistor biochips by the plasma enhanced atomic layer deposition (PEALD) method before being housed are studied depending on the deposition and annealing modes. Coating the natural silicon oxide with a nanometer Al2O3 layer insignificantly decreases the femtomole sensitivity of biosensors, but provides their stability in bioliquids. In deionized water, transistors with annealed aluminum oxide are closed due to the trapping of negative charges of <(1–10) × 1011 cm?2 at surface states. The application of a positive potential to the substrate (Vsub > 25 V) makes it possible to eliminate the negative charge and to perform multiple measurements in liquid at least for half a year.  相似文献   

5.
BiFeO3–ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron–hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.  相似文献   

6.
Developing scalable methods to produce large quantities of high‐quality and solution‐processable graphene is essential to bridge the gap between laboratory study and commercial applications. Here an efficient electrochemical dual‐electrode exfoliation approach is developed, which combines simultaneous anodic and cathodic exfoliation of graphite. Newly designed sandwich‐structured graphite electrodes which are wrapped in a confined space with porous metal mesh serve as both electrodes, enabling a sufficient ionic intercalation. Mechanism studies reveal that the combination of electrochemical intercalation with subsequent thermal decomposition results in drastic expansion of graphite toward high‐efficiency production of graphene with high quality. By precisely controlling the intercalation chemistry, the two‐step approach leads to graphene with outstanding yields (85% and 48% for cathode and anode, respectively) comprising few‐layer graphene (1–3 layers, >70%), ultralow defects (ID/IG < 0.08), and high production rate (exceeding 25 g h?1). Moreover, its excellent electrical conductivity (>3 × 104 S m?1) and great solution dispersibility in N‐methyl pyrrolidone (10 mg mL?1) enable the fabrication of highly conductive (11 Ω sq?1) and flexible graphene films by inkjet printing. This simple and efficient exfoliation approach will facilitate the development of large‐scale production of high‐quality graphene and holds great promise for its wide application.  相似文献   

7.
The double perovskite Cs2AgBiBr6 single crystal holds great potential for detecting applications because of its low minimum detectable dose rate and toxic‐free merit. Nevertheless, the disordered arrangement of Ag+/Bi3+ usually gives rise to unexpected structural distortion and thereafter heavily influences the photoelectric properties of the Cs2AgBiBr6 single crystal. Herein, phenylethylamine bromide is demonstrated to be capable of in situ regulation of the order–disorder phase transition in the Cs2AgBiBr6 single crystal. The improved ordering extent of alternatively arranged [AgX6]5? and [BiX6]3? octahedra is theoretically and experimentally proven to decrease the defect density and suppress self‐trapped exciton formation, and thereby tune the band gap and enhance the carrier mobility, which consequently promotes its application in an X‐ray detector. The performance of a corresponding detector based on PEA‐Cs2AgBiBr6 single crystal displays superior performances, e.g., longer carrier drift distance, higher photoconductive gain, and faster current response (13 vs 3190 µs). Prominently, the as‐fabricated PEA‐Cs2AgBiBr6 single‐crystal X‐ray detector has an extremely high sensitivity with a value of 288.8 µC Gyair?1 cm?2 under a bias of 50 V (22.7 V mm?1), which largely outperforms those of their counterparts with lower ordering structure.  相似文献   

8.
The current-voltage (I-V) characteristics of PbGa2Se4 single crystals grown by the Bridgman-Stockbarger method with a resistivity of 1010–1012 Ω cm were measured. The value of the majority carrier mobility μ=14 cm2 V?1 s?1, calculated by the differential method of analysis of I-V characteristics, makes it possible to evaluate a number of parameters: the carrier concentration at the cathode (nc0=2.48 cm?3), the width of the contact barrier dc=5.4×10?8 cm, the cathode transparency D c * =10?5–10?4 eV, and the quasi-Fermi level EF=0.38 eV. It is found that a high electric field provides the charge transport through PbGa2Se4 crystals in accordance with the Pool-Frenkel effect. The value of the dielectric constant calculated from the Frenkel factor is found to be equal to 8.4.  相似文献   

9.
The reflectance spectra of a p-Bi2Te3:Sn crystal are recorded in the range 50–7900 cm–1. The spectra possess features characteristic of charge-carrier plasma oscillations and a contribution of phonons. It is shown that the dielectric function that is used in the context of Drude–Lorentz theory and includes the contributions of hole plasma oscillations and two phonons adequately describes the experimental data obtained at room temperature and at a temperature of T = 78 K.  相似文献   

10.
Temperature dependences of electrical conductivity σ(T) and permittivity ɛ(T) of one-dimensional (1D) TlGaTe2 single crystals are investigated. At temperatures higher than 305 K, superionic conductivity of the TlGaTe2 is observed and is related to diffusion of Tl+ ions via vacancies in the thallium sublattice between (Ga3+Te22− nanochains. A relaxation character of dielectric anomalies is established, which suggests the existence of electric charges weakly bound to the crystal lattice. Upon the transition to the superionic state, relaxors in the TlGaTe2 crystals are Tl+ dipoles ((Ga3+Te22−) chains) that arise due to melting of the thallium sublattice and hops of Tl+ ions from one localized state to another. The effect of a field-induced transition of the TlGaTe2 crystal to the superionic state is detected.  相似文献   

11.
The hexagonal modification of In2Se3 single crystal is grown by planar crystallization from nearly stoichiometric melt and by the vapor-phase method. For the first time, the Schottky barriers In/n-In2Se3, which are photosensitive in a wide incident-photon energy range of 1–3.8 eV at 300 K, are obtained. The nature of the interband photoactive absorption is studied. The energy-barrier height and interband optical-transition energy are estimated. It is concluded that the grown crystals can be used in broadband optical-radiation converters.  相似文献   

12.
The results of investigations of the frequency and temperature dependences of dielectric losses and the imaginary part of the dielectric permittivity in FeGaInS4 single crystals are presented. Their experimental values are determined. It is established that the loss tangent and the imaginary part of the permittivity of FeGaInS4 single crystals in a field with frequencies of 104–106 Hz decrease inversely proportional to the frequency (tanδ ~ 1/ω), and the conductivity is characterized by the band–hopping mechanism. For FeGaInS4, the relaxation time is calculated, and it is established that there is a mechanism of electron polarization caused by thermal motion in this crystal.  相似文献   

13.
This paper reports molecular dynamics simulations performed to study the mechanical properties of Zn4Sb3 nanofilms. In the simulations, interatomic interactions are represented by an enhanced atomic potential, and the crystal structure is based on the core structure of β-Zn4Sb3. For tensile loading along the [0 1 0] direction, the stability of the crystal structure of the Zn4Sb3 nanofilms is analyzed by the radial distribution function method, and the stress–strain relation of the nanofilms is obtained at room temperature. Our present work indicates that the mechanical properties of Zn4Sb3 nanofilms are quite different from those of bulk Zn4Sb3 due to the impact of surface atoms of the nanostructure. From the atomic configuration, Zn4Sb3 nanofilms exhibit typical brittleness. The size effect and the strain-rate effect on the extension of Zn4Sb3 nanofilms are discussed in detail. Lastly, the mechanical properties of nanofilms based on different Zn4Sb3 crystal structure models are examined.  相似文献   

14.
This article summarizes our most recent studies on improved Li+‐intercalation properties in vanadium oxides by engineering the nanostructure and interlayer structure. The intercalation capacity and rate are enhanced by almost two orders of magnitude with appropriately fabricated nanostructures. Processing methods for single‐crystal V2O5 nanorod arrays, V2O5·n H2O nanotube arrays, and Ni/V2O5·n H2O core/shell nanocable arrays are presented; the morphologies, structures, and growth mechanisms of these nanostructures are discussed. Electrochemical analysis demonstrates that the intercalation properties of all three types of nanostructure exhibit significantly enhanced storage capacity and rate performance compared to the film electrode of vanadium pentoxide. Addition of TiO2 to orthorhombic V2O5 is found to affect the crystallinity, microstructure, and possible interaction force between adjacent layers in V2O5, and subsequently leads to enhanced Li+‐intercalation properties in V2O5. The amount of water intercalated in V2O5 is found to have a significant influence on the interlayer spacing and electrochemical performance of V2O5·n H2O. A systematic electrochemical study has demonstrated that the V2O5·0.3 H2O film has the optimal water content and exhibits the best Li+‐intercalation performance.  相似文献   

15.
Polyanion‐type sodium (Na) vanadium phosphate in the form of Na3V2(PO4)3 has demonstrated reasonably high capacity, good rate capability, and excellent cyclability. Two of three Na ions per formula can be deintercalated at a potential 3.4 V versus Na+/Na with oxidation of V3+/4+. In the reversible process, two Na ions intercalate back resulting in a discharge capacity of 117.6 mAh g?1. Further intercalation is possible but at a low potential of 1.4 V versus Na+/Na accompanied by vanadium reduction V3+/2+, leading to a capacity of 60 mAh g?1. Due to its marvelous electrochemical performance, it has attracted a lot of attention since its discovery in the 1990s. To develop truly useable polyanion‐type vanadium phosphate, better understanding of its crystal configuration, sodium ions' transportation, and electronic structure is essential. Therefore, this review only focuses on the inside of crystal configuration and electronic structure of polyanion‐type vanadium phosphate, Na3V2(PO4)3, since there are a few good reviews on various processing technologies.  相似文献   

16.
The process of surface texturing of single-crystal silicon oxidized under a V2O5 layer is studied. Intense silicon oxidation at the Si–V2O5 interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO2 inclusions in silicon depth up to 400 nm is formed at the V2O5–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10–15 cm2 s–1). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V2O5 through the SiO2 layer to silicon, and SiO x precipitate formation in silicon is proposed. After removing the V2O5 and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.  相似文献   

17.
Sodium ion batteries (SIBs) are promising alternatives to lithium ion batteries with advantages of cost effectiveness. Metal sulfides as emerging SIB anodes have relatively high electronic conductivity and high theoretical capacity, however, large volume change during electrochemical testing often leads to unsatisfactory electrochemical performance. Herein bimetallic sulfide Cu2MoS4 (CMS) with layered crystal structures are prepared with glucose addition (CMS1), resulting in the formation of hollow nanospheres that endow large interlayer spacing, benefitting the rate performance and cycling stability. The electrochemical mechanisms of CMS1 are investigated using ex situ X‐ray photoelectron spectroscopy and in situ X‐ray absorption spectroscopy, revealing the conversion‐based mechanism in carbonate electrolyte and intercalation‐based mechanism in ether‐electrolyte, thus allowing fast and reversible Na+ storage. With further introduction of reduced graphene oxide (rGO), CMS1–rGO composites are obtained, maintaining the hollow structure of CMS1. CMS1–rGO delivers excellent rate performance (258 mAh g?1 at 50 mA g?1 and 131.9 mAh g?1 at 5000 mA g?1) and notably enhanced cycling stability (95.6% after 2000 cycles). A full cell SIB is assembled by coupling CMS1–rGO with Na3V2(PO4)3‐based cathode, delivering excellent cycling stability (75.5% after 500 cycles). The excellent rate performance and cycling stability emphasize the advantage of CMS1–rGO toward advanced SIB full cells assembly.  相似文献   

18.
A general method to synthesize mesoporous metal oxide@N‐doped macroporous graphene composite by heat‐treatment of electrostatically co‐assembled amine‐functionalized mesoporous silica/metal oxide composite and graphene oxide, and subsequent silica removal to produce mesoporous metal oxide and N‐doped macroporous graphene simultaneously is reported. Four mesoporous metal oxides (WO3? x , Co3O4, Mn2O3, and Fe3O4) are encapsulated in N‐doped macroporous graphene. Used as an anode material for sodium‐ion hybrid supercapacitors (Na‐HSCs), mesoporous reduced tungsten oxide@N‐doped macroporous graphene (m‐WO3? x @NM‐rGO) gives outstanding rate capability and stable cycle life. Ex situ analyses suggest that the electrochemical reaction mechanism of m‐WO3? x @NM‐rGO is based on Na+ intercalation/de‐intercalation. To the best of knowledge, this is the first report on Na+ intercalation/de‐intercalation properties of WO3? x and its application to Na‐HSCs.  相似文献   

19.
Organic–inorganic halide hybrid perovskite materials are promising materials for X‐ray and photon detection due to their superior optoelectronic properties. Single‐crystal (SGC) perovskites have increasingly attracted attention due to their substantially low crystal defects, which contribute to improving the figures of merit of the devices. Cuboid CH3NH3PbI3 SGC with the naturally favorable geometry for device fabrication is rarely reported in X‐ray and photon detection application. The concept of seed dissolution‐regrowth to improve crystal quality of cuboid CH3NH3PbI3 SGC is proposed and a fundamental understanding of the nucleation and growth is provided thermodynamically. The X‐ray detector fabricated from cuboid CH3NH3PbI3 SGC demonstrates the firstly reported high sensitivity of 968.9 µC?1 Gy?1 cm?2 under ?1 V bias. The results also show that the favorable crystal orientation and high quality of cuboid CH3NH3PbI3 leads to better responsivity and faster response speed than the more common dodecahedral CH3NH3PbI3 in photodetection. Consequently, the work paves a way to synthesize high‐quality perovskite SGCs and benefits the application of MAPbI3 SGCs with preferred crystal orientation and favorable crystal geometry for emerging device applications.  相似文献   

20.
In this paper, a novel and simple sodium alginate (SA) gel method was developed to prepare γ-Na x Co2O4. This method involved the chemical gelling of SA in the presence of Co2+ ions by cross-linking. After calcining at 700°C to 800°C, single-phase γ-Na x Co2O4 crystals were obtained. The arrangement of about 1 μm to 4 μm flaky particles exhibited a well-tiled structure along the plane direction of the flaky particles. SA not only acted as the control agent for crystal growth, but also provided a Na source for the γ-Na x Co2O4 crystals. The electrical properties of γ-Na x Co2O4 ceramics prepared via ordinary sintering after cold isostatic pressing were investigated. The Seebeck coefficient and power factor of the bulk material were 177 μV K−1 and 4.3 × 10−4 W m−1 K−2 at 850 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号