共查询到18条相似文献,搜索用时 53 毫秒
1.
文中在前人的基础上,改进了基于四叉树的LOD模型,通过该模型管理和组织地形数据,建立节点判断准则来决定当前视区的细节程度,最终通过程序编译证明该算法能生成连续的多分辨率地形模型,提高了地形漫游的运行效率和实现不同分辨率地形模型之间的平滑过度. 相似文献
2.
3.
在地形可视化领域,实时绘制复杂地形场景的最有效工具是LOD技术。结合四叉树数据结构与不规则三角网数据结构的优点,提出一种混合数据结构的地形简化算法。算法通过使用不同的误差阈值,实现了视点相关的地形简化。同时通过有效的误差控制原则,解决了不规则三角网分块之间的拼接问题,消除了地形裂缝。实验结果证明了算法能高效地生成地形的连续多分辨率模型,实现地形场景的平滑绘制。 相似文献
4.
孙锴 《电子技术与软件工程》2020,(15):205-206
本文提出了一种基于四叉树算法的三维地形显示技术,根据实际的地球表面几何模型构建数据逻辑坐标系统,然后详细描述了基于四叉树组织地图数据和所采用的数据调度算法。 相似文献
5.
本文针对三维GIS大规模地形的实时渲染问题,研究了基于四叉树的LOD算法的设计.首先,建立了简单高效地节点评价系统和裁剪体系统,然后对网格的渲染过程可能出现的问题,给出了可行的解决方案,以及如何保证四叉树的合法性和筛选合适的节点.最后程序运行结果表明,该算法可以很好地解决三维GIS大规模地形渲染的性能问题,并对本算法的实现存在的不足进行了分析和建议. 相似文献
6.
7.
传统的多视点生成方法是基于多相机阵列系统的关键技术。现提出了基于Kinect的多视点成像计算方法。首先对Kinect的深度图使用三边滤波器进行平滑,根据修复好的深度图配合彩色图,利用DIBR技术生成多个存在空缺信息的彩色视点;最后结合彩色图的纹理结构信息和深度图的背景信息对有丢失信息的彩色图进行修复。实验结果表明,文中提出的深度修复方法能够有效地修补Kinect的深度图,生成的虚拟视点图在3DTV上效果明显,立体视觉效果显著。 相似文献
8.
传统的多视点生成方法是基于多相机阵列系统的关键技术。现提出了基于Kinect的多视点成像计算方法。首先对Kinect的深度图使用三边滤波器进行平滑,根据修复好的深度图配合彩色图,利用DIBR技术生成多个存在空缺信息的彩色视点;最后结合彩色图的纹理结构信息和深度图的背景信息对有丢失信息的彩色图进行修复。实验结果表明,文中提出的深度修复方法能够有效地修补Kinect的深度图,生成的虚拟视点图在3DTV上效果明显,立体视觉效果显著。 相似文献
9.
针对大规模三维地形的实时渲染问题,提出一种基于顶点法向量的模型简化算法。渲染过程中利用视图体的投影方式快速裁剪数据块,丢弃与视图体相离的数据块,将部分可见和完全可见的数据块全部加载到内存,根据视点到节点的距离和地形的粗糙程度构造了节点分辨率评价函数,最后采用加点的方法消除裂缝。仿真结果表明,该算法能有效减少渲染地形所需的三角形数目和时间,且对地形的逼真度影响较小。 相似文献
10.
在实时三维视景仿真的高性能软件Vega平台上,通过建立算法的数学模型,运用向量方法求出动态的视点位置和焦点位置,借助VegaAPI编程,实现了实时动态观察两个物体运动的全过程,并可以动态的调节视点,提高了视点控制的灵活性、可控性,增强了三维视景仿真的真实感和沉浸感。 相似文献
11.
12.
《Solid-State Circuits, IEEE Journal of》1967,2(4):221-226
Methods for generating tests for combinatorial and sequential logic circuits are discussed. A survey of existing techniques is given. An integrated approach that uses many of the existing methods plus new techniques is described and illustrated. 相似文献
13.
Sensor node localization is one of research hotspots in the applications of wireless sensor networks (WSNs) field. In recent years, many scholars proposed some localization algorithms based on machine learning, especially support vector machine (SVM). Localization algorithms based on SVM have good performance without pairwise distance measurements and special assisting devices. But if detection area is too wide and the scale of wireless sensor network is too large, the each sensor node needs to be classified many times to locate by SVMs, and the location time is too long. It is not suitable for the places of high real-time requirements. To solve this problem, a localization algorithm based on fast-SVM for large scale WSNs is proposed in this paper. The proposed fast-SVM constructs the minimum spanning by introducing the similarity measure and divided the support vectors into groups according to the maximum similarity in feature space. Each group support vectors is replaced by linear combination of “determinant factor” and “adjusting factor” which are decided by similarity. Because the support vectors are simplified by the fast-SVM, the speed of classification is evidently improved. Through the simulations, the performance of localization based on fast-SVM is evaluated. The results prove that the localization time is reduce about 48 % than existing localization algorithm based on SVM, and loss of the localization precision is very small. Moreover, fast-SVM localization algorithm also addresses the border problem and coverage hole problem effectively. Finally, the limitation of the proposed localization algorithm is discussed and future work is present. 相似文献
14.
随着芯片集成度的提高和规模的增大,连线效应已成为影响电路性能的主要因素。对于分析、验证电路线网问题,直接利用常规线性方程组求解算法无法同时满足内存空间与运行时间上的限制。文章分析了Cholesky分解法的网络模型,提出了一种网络层次式矩降压缩方法,实现了快速线网分析和验证运算。 相似文献
15.
16.
This paper reviews the state-of-the-art features introduced by sink mobility into wireless sensor networks (WSN), and introduces
the architecture of mobile enabled Wireless Sensor Network (mWSN) to realize large-scale information gathering via networked
wireless sensors and mobile sinks. After introducing the mobile sensing scenarios, some fundamental design parameters in mWSN
have been investigated, such as cluster size, sink velocity, transmission range, and packet length. Our contributions include:
(1) A cluster formation method has been proposed via multihop forwarding to form a cluster around the expected position of
a mobile sink, in order to guarantee packet delay and minimize energy consumption. (2) Analysis of the performance influence
by sink mobility leads to the conclusion that the optimal sink velocity must make a compromise between sink-sensor meeting
delay and message delivery delay. (3) Finding that large transmission range and short packet length are both of benefit to
lower the outage probability of packet transmission. Extensive simulations have been designed to evaluate the performance
of mWSN in terms of packet delay, energy consumption and outage probability of packet transmission.
相似文献
Jyri P. SalomaaEmail: URL: http://research.nokia.com |
17.
平衡图划分是改善并行图计算性能的关键.一个良好的划分算法应保证划分后的子图在负载均衡的前提下,减少子图之间的交互边(切割边)规模,从而减少网络通信.对此,本文设计一种基于层次亲和聚类的分布式大图划分算法(DisHAP).该算法采用亲和聚类的思想,将图初始划分为规模相等的k个子图;再将结果映射成顶点序列,以线性嵌入顺序处理节点,通过局部交换策略优化割边率;最后将DisHAP应用在MapReduce框架中,使用多种真实及理论图数据,与现有的大图划分算法做比较分析.以Twitter图为例,划分2,4,8,16,32个子区,相较于现有的大图划分算法(LDG,BLP,Spinner,Fennel,ParMetis及PSA-MIR算法),割边率减少1.7%~30.2%,说明了该算法的优越性.同时该算法具有良好的可扩展性,划分的子区数量及图的规模对划分时间具有较低的影响. 相似文献