首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对阵列天线馈电网络比较复杂的问题,设计了一款24 GHz新型串并馈结合的微带天线阵,并进行了理论研究和仿真测试。该天线阵采用了串并联混合馈电网络,天线子阵和馈电网络的电流分布均采用了切比雪夫分布,有效抑制了旁瓣电平。同时将馈电网络与串馈天线子阵直接连接在一起,达到了小型化的目的,并减小了馈电网络的损耗。仿真结果表明:天线阵的增益可达到21.7 dBi,在中心频率24.1 GHz附近,E面和H面的副瓣电平分别为-20.3 dB 和-26.2 dB。该天线阵体积小,性能可靠,可用于24 GHz汽车防撞雷达。  相似文献   

2.
A planar antenna array, based on nine identical quasi-Yagi elements, is presented in this paper. Contrary to conventional designs, the feeding network is composed of three-way power dividers, which are carefully designed in order to provide synchronized output signals over a wide frequency range. The use of spline-shaped microstrip lines suppresses coupling effects by parallel lines. Thus, signal distortions within the feeding network are minimized. Compared to conventional designs with eight elements, the additional antenna element will enhance the gain of the array, which is between 10.5 dBi and 13 dBi in the X band. The input return loss of the antenna array is below -15 dB over most parts of the relevant spectrum, with a total bandwidth of 45%. The planar antenna array is well suited as a radiating element in linear phased arrays for multifunction radars, including SAR and MTI. Additionally, the suitability of this antenna for phased-array applications is studied by an experimental setup consisting of five antenna plates.  相似文献   

3.
为了提高24 GHz物位雷达系统的精度和抗干扰能力,设计并制作了一款高增益、低副瓣、易集成的微带阵列天线。为了抑制天线的副瓣电平,该天线各阵元间的电流采用同相不等幅分布设计;同时,采用两种不同馈线的单元和串并联混合馈电网络,降低了馈电网络的设计难度。实测结果表明,该阵列天线的带宽为690 MHz(23.77~24.46 GHz),最大增益达到20.1 dBi,E面和H面的副瓣电平分别为-20.7 dB和-19.3 dB。该阵列天线结构紧凑、可靠性高,可用于24 GHz物位雷达系统。  相似文献   

4.
Shin  H.S. Kim  N. 《Electronics letters》2002,38(19):1072-1073
The design, fabrication, and experimental implementation of the one-patch microstrip antenna coupled with an H-shaped aperture are presented. The presented antenna has a wide bandwidth, high gain, and low cross-polarisation levels with only one-patch. The measured bandwidth of this antenna is 56.2% for the voltage standing wave ratio ⩽2.0. The cross-polarisation level is below -18.2 dB at the E-plane and below -25.7 dB at the H-plane. The maximum gain at 2.05 GHz is 10.4 dBi and the 3 dB gain bandwidth with a centre frequency at 2.17 GHz is 24%  相似文献   

5.
赵璐 《微波学报》2015,31(4):16-19
设计了一种双频段双极化的阵列天线。该阵列天线采用多层微带天线形式,七层结构,通过口径耦 合和微带线边馈两种馈电方式实现双线极化,在辐射贴片上方增加寄生贴片以扩展带宽,实现双频段。天线工作在 12.25 ~12.75GHz 及14 ~ 14.5GHz,实测增益18dB 左右,隔离度大于40dB。该天线剖面低,重量轻,可作为子阵组 成更大规模的双频段双极化阵列。  相似文献   

6.
A new receiving planar array antenna for DBS (direct broadcasting satellite) is proposed. The element antenna is a short waveguide aperture mounted in the ground plane, loaded with a dielectric and polarizers, and excited through its side wall by another feeding rectangular waveguide. The gain of the element antenna loaded with a dielectric is so high that the grating lobes can be reduced sufficiently even if the element spacing in the array is wider than the wavelength in free space. Therefore we can reduce the number of the array elements, and parallel feeding by the low loss waveguide network can be feasible to provide a planar array antenna. This paper describes the experimental results of several kinds of the circularly polarized dielectric-loaded element antennas and the planar antennas fed by the waveguide network. In the 12 GHz band the planar antenna with 64-element radiators has a maximum gain of 31.9 dBi with an aperture efficiency of 94.7%, the 1 dB-down frequency bandwidth of the gain is about 800 MHz (6.7% for a center frequency of 11.85 GHz), and the frequency bandwidth of the axial ratio is less than 1 dB of 850 MHz (7.2%)  相似文献   

7.
A new printed microstrip Yagi array antenna is proposed that can achieve a high gain and low backside radiation for various applications up to the millimeter-wave frequency range. The high front-to-back (F/B) ratio (up to 15 dB) is attributed to the constructive interference that takes place between the individual printed Yagi arrays in the design. Through the spacing of the elements, the directivity (between 9-11.5 dBi) and the F/B ratio can be altered to suit the application of interest. The operational principles of this design are discussed to give insight on the radiation mechanism of the antenna. An initial design at around 32.5 GHz is presented to show the performance capabilities of this configuration. An impedance bandwidth of 8.3% can be achieved around this frequency. Then, a parametric analysis is conducted to estimate the significance of the design parameters that affect the antenna's performance. Finally, measured return loss and radiation pattern performance at 5.2 GHz is displayed to validate the principles and simulated results of the design. The measured impedance bandwidth of 10% is achieved. The F/B ratio is 15 dB which is larger than values previously published by 5-10 dB. Additionally, a gain of 10.7 dBi is observed. To the author's knowledge, this is the first microstrip Yagi array antenna presented that has a high gain and a high F/B ratio designed using simple fabrication techniques  相似文献   

8.
设计了一副宽带高增益圆极化微带天线,并进行组阵分析。天线中心频率2.6 GHz,通过增加寄生贴片和空气层来提高天线单元的增益和带宽。上下两层介质板上边长不同的切角方形贴片分别激励一个低频与高频的圆极化模,有效地拓宽了轴比带宽。仿真结果表明,反射系数|S11|<-10 dB带宽21.8%,3 dB轴比带宽12.0%,中心频率点增益9.0 dBi。对天线单元进行加工测试,与仿真结果较为吻合。设计了2×4元阵列,并进行了仿真,增益提升至17.5 dBi,3 dB轴比带宽10.4%。  相似文献   

9.
余磊  陈星 《电子科技》2013,26(5):60-63
采用2阶皮亚诺分形曲线,设计了一种具有高增益端射特性的微带阵列天线。该阵列天线由多段皮亚诺分形曲线组成,通过添加微带相移器,分形曲线构成了一个偶极子天线阵列。文中介绍和分析了该分形阵列天线的工作原理、结构和主要参数对性能的影响。设计并制作了一只工作于5.8 GHz的分形阵列天线,仿真和测试结果表明,该天线具有良好的辐射特性,其端射增益达19 dB,旁瓣<-12 dB,交叉极化>30 dB,天线口径效率超过90%。  相似文献   

10.
该文将磁电偶极子天线作为辐射阵子,并应用一种共面波导馈电网络,研究并设计了一种新型44毫米波天线阵列。这种设计不仅具有很宽的阻抗带宽和增益带宽,而且价格低廉易于生产。仿真和测试结果表明,此天线阵列的相对阻抗带宽为54.5%, 3 dB增益带宽为37.1%,在工作频带内(40.2~70.0 GHz),最大增益为18.1 dBi。而基于其他技术设计的44毫米波天线阵列(如微带天线、偶极子天线)工作频带宽度一般在20%左右,增益一般在16~17 dBi。所以该文提出的天线阵列设计具有明显的优势。另外,仿真设计结果和实测的电参数数据有较好的一致性。  相似文献   

11.
提出了一种新型平面单极子微带天线阵,以平面矩形单极子天线为原型,通过改变辐射贴片的形状实现对原有天线性能的优化。设计了中心频率为2.4 GHz,相对带宽是42%,增益达13 dBi的宽频带四单元平面单极天线阵。通过仿真与实验表明,该天线在1.93 GHz~2.93 GHz频带内反射系数均小于-10 dB。  相似文献   

12.
A low-profile high-gain antenna array of box horns for the frequency band 57.2-58.2 GHz is presented. The antenna consists of 256 radiating elements divided into two subgroups of 128 elements fed by a rectangular waveguide feed network. The radiating elements are fed in parallel and the waveguides are connected with T-junctions. The matching of the T-junctions is improved with a matching pin and a splitter. Because of the waveguide feed network, the element spacing is larger than one wavelength, which causes grating lobes. The grating lobes and sidelobes in the H-plane have been suppressed by the use of a combination of subarrays, a special characteristic of the box horn, and an array amplitude tapering. The measured sidelobe levels in the H-plane are below -30 dB at angles larger than 8° from boresight. A gain higher than 35.7 dBi and a return loss higher than 14.4 dB have been measured for the antenna over the band 57.2-58.2 GHz  相似文献   

13.
A new dual-frequency dual-polarized array antenna for airborne applications is presented in this paper. Two planar arrays with thin substrates (R/T Duroid 5880 substrate, with εr = 2.2 and a thickness of 0.13 mm) are integrated to provide simultaneous operation at S band (3 GHz) and X band (10 GHz). Each 3 GHz antenna element is a large rectangular ring-resonator antenna, and has a 9.5 dBi gain that is about 3 dB higher than the gain of an ordinary ring antenna. The 10 GHz antenna elements are circular patches. They are combined to form the array with a gain of 18.3 dBi, using a series-fed structure to save the space of the feeding line network. The ultra-thin array can be easily placed on an aircraft's fuselage, due to its lightweight and conformal structure. It will be useful for wireless communication, radar, remote sensing, and surveillance applications.  相似文献   

14.
提出了一种基于新型人工表面等离子体激元(Spoof Surface Plasmon Polaritons, SSPPs)馈电带有引向器的低剖面宽带八木天线阵列。天线阵列包括两部分:基于人工表面等离子体激元波导的四路宽带功分器和八木天线阵列。人工表面等离子体激元具有高的场局限性,将信号束缚在人工表面等离子体激元的凹槽结构中保证了信号的高效传输,减少了传输损耗。八木天线通过进一步加载引向器结构能够实现端射辐射特性。测试结果表明:天线阵列的回波损耗在4.5 ~6.05 GHz 频率范围内小于-10 dB。天线阵列实际增益在4.5 ~ 6.05 GHz 范围内最高可达11.1 dBi。  相似文献   

15.
Reduction in antenna size by using multi-band radiators play a vital role in the miniaturization of present world wireless handheld devices, as dual band behaviour of the antennas result in the integration of more than one communication standard in a single system and thus, saving the installation space required for separate antennas. In this context, this communication presents a shorted-pin dual band metamaterial inspired microstrip patch antenna array. Under the unloaded conditions, the traditional patch antenna array resonates at 5.8 GHz with gain of 9.8 dBi and bandwidth of 540 MHz. However, when each patch of this traditional antenna array is loaded with split ring resonator (SRR) and a metallic via hole is introduced in the patch, the same antenna array produces an additional resonant frequency in IEEE 802.11b/g/n 2.45 GHz Wi-Fi band with bandwidth and gain of 290 MHz and 5.6 dBi, respectively, while the initial resonant frequency (i.e. 5.8 GHz) gets shifted to IEEE 802.11ac 5 GHz Wi-Fi band, providing the gain and bandwidth of 11.4 dBi and 510 MHz, respectively. The proposed antenna array has been fabricated, and the measured results are presented to validate the proposed array. Moreover, the equivalent circuit of the proposed antenna array has been designed and analyzed to validate the simulated, measured and theoretical results. Attainment of dual band characteristics by incorporating the metamaterial with single band traditional patch antenna array makes this structure novel, as this has been achieved without any extra hardware cost, size and loss of structural planarity. Also, both the frequency bands of this proposed metamaterial inspired antenna array possess considerable gain and bandwidth.  相似文献   

16.
随着超低功耗芯片技术的发展,无线传感器节点的功耗已进入微瓦(μW)级范围,使低功耗传感器利用周围环境中的射频无线能量为自身供电成为可能。提出了一种用于无线传感器节点的小型射频能量接收天线。该天线采用微带缝隙结构,基于缝隙天线设计理论,应用全波电磁场工具对其进行了设计及仿真优化,并获得了该结构谐振点随尺寸变化的一般规律。在常用FR4材料的小尺寸双面PCB板上,通过开槽加载和微带线馈电方法使天线可以同时工作在GSM和ISM两个频段。在1.9GHz和2.4CHz频率点上,天线的回波损耗分别为-39.4dB和-20.8dB,最大增益分别达到1.4dBi和2.9dBi,测试与仿真结果基本吻合。该天线含地平面在内的尺寸为5cm×5cm,实现成本低,可同时接收两个频段的射频能量,有效地扩展了频率适应范围,提高了能量接收效率。  相似文献   

17.
一种基于零阶谐振特性的新型微带阵列天线   总被引:1,自引:1,他引:0  
设计了一种中心频率在2.45GHz的新型零阶谐振微带阵列天线。该天线由4个谐振单元级联组成,可形成有耗的零阶谐振结构。其测量结果表明:在中心频率为2.45GHz时,其电压反射系数达到了-32dB,对应的带宽为1.5%,增益达到10.8dBi,相对于单个贴片天线增加了5.6dB,与仿真结果吻合较好。与一般的微带阵列天线相比,其尺寸减小,性能提高,在微波能量传输和目标探测等领域具有良好的应用前景。  相似文献   

18.
The design of an optimized electronically steerable passive array radiator (ESPAR) antenna is presented. A genetic algorithm using a finite element based cost function optimized the antenna's structure and loading conditions for maximal main lobe gain in a single azimuth direction. Simulated gain results of 7.3 dBi at 2.4 GHz were attained along the antenna's elemental axis. The optimized antenna was fabricated and tested with the corresponding experimental gain better than 8 dBi. The 0.7 dB error between simulated and measured gain was constant for numerous structures and therefore did not affect the optimization. The optimized antenna reduced average main lobe elevation by 15.3/spl deg/ to just 9.7/spl deg/ above the horizontal.  相似文献   

19.
A numerical simulation and an experimental implementation of T‐shaped microstrip‐fed printed slot array antenna are presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the finite‐difference time‐domain (FDTD) method. The dependence of design parameters on the bandwidth characteristics is investigated. The measured bandwidth of twin‐slot array antenna is from 1.37 GHz to 2.388 GHz, which is approximately 53.9 % for return loss less than or equal to ‐10 dB. The bandwidth of twin‐slot is about 1.06 % larger than that of single‐slot antenna. The measured results are in good agreement with the FDTD results.  相似文献   

20.
本文设计了一种2.45GHz二元圆极化微带天线阵列,天线单元采用开槽的圆形贴片形式.测试结果表明:在工作频段内,其仿真和测试结果吻合,回波损耗为-23.01dB,相对带宽为9.8%(VSWR 2),方向图良好,增益大于12dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号