首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An integrated model is proposed that comprises essentially, an Enhanced Profile-Based Strategy (EPBS) for small-scale roaming and a Caching Two-Level Forwarding Pointer (C2LFP) strategy for large-scale roaming. The idea behind the integrated model is how those two location management solutions are applied, and what is the suitable approach to specify the physical parameters of PCS networks from mobility management’s point of view so that our solutions can be more cost effective for location management. An evolutionary method, using a constrained Genetic Algorithm (GA) has been used to achieve network parameters optimization. For convenience, we selected the underlying planning problem with an appropriate set of parameters so that it can be treated, in what follows, both genetically and analytically. Thus one can easily verify the accuracy and efficiency of the evolutionary solution that would be obtained from the genetic algorithm. For more realistic environments, GA could be used reliably to build up sophisticated models that integrate the small-scale and large-scale roaming parameters of PCS networks. The results that have been obtained from a case study are presented in order to provide a deep explanation for the proposed integration approach. Salah M. Ramadan (samohra@yahoo.com) received the BS and MS degrees from Computers Engineering Department, Al-Azhar University, Cairo, Egypt, in 1995 and 2002, respectively. From 2002, he was a PhD student in Computers Engineering Department at Al-Azhar University and is currently pursuing the PhD degree, where he is a research assistant in the Wireless Networks Branch. His research interests include traffic management in ATM networks, routing protocols, mobility management in PCS networks, and mobile computing. He is currently an instructor in Cisco Academy, Egypt. Ahmed M. El-Sherbini (Sherbini@mcit.gov.eg) received the Ph.D. in Electrical and Communication Engineering, Case Western University, U.S.A. March 1983 and M.Sc. in Communication Engineering, Cairo University, Giza, Egypt, June 1980. (M.Sc. Research Studies at the Ecole Nationale Superieure des Telecommunications (ENST), Paris, France) He is the Director, National Telecommunication Institute – Ministry of Communications and Information Technology, Egypt and Professor of Electrical and Communication Engineering Dept. Faculty of Engineering, Cairo University, Egypt. M. I. Marie(azhar@mailer.scu.eun.eg) received his B.Sc, M.Sc and PhD in electronic and communication engineering from Cairo University on 1972, 1981, 1985, respectively. Now he is a professor of communications at Computer and System Engineering Department Al-Azhar University, Cairo, Egypt. His fields of interest includes digital communication, computer networks and protocols development. M. Zaki is the professor of software engineering, Computer and System Engineering Department, Faculty of Engineering, Al-Azhar University at Cairo. He received his B.Sc. and M.Sc. degrees in electrical engineering from Cairo University in 1968 and 1973 respectively. He received his Ph.D. degrees in computer engineering from Warsaw Technical University, Poland in 1977. His fields of interest include artificial intelligence, soft computing, and distributed system.  相似文献   

2.
In this paper, a generalized multiple-input multiple-output (MIMO) antenna system that can be fitted to the uplink of a wireless communication system is considered for the general case of multi-user. At the transmitter, the information bits are Turbo coded, then interleaved and passed through a serial-to-parallel converter. The channel is assumed bad urban suffering from multipath Rayleigh fading resulting in inter-symbol and multiple access interferences (ISI and MAI). At the front-end of the receiver, a number of receiving antennas are used followed by a joint multi-user estimator based on the Minimum Mean Square Error Block Linear Equalizer (MMSE-BLE).Computer simulations demonstrate a significant performance improvement in both single user and multi-user cases.This paper depends in parts on that presented at the 11th European Wireless Conference, Cyprus, Nicosia, pp. 187–192, April 2005. Yasmine A. Fahmy was born in Guiza, Egypt, on June 4, 1976. She received the B.Sc., M.Sc. and Ph.D. degrees in Communication and Electronics engineering from Cairo University, Egypt on 1999, 2001 and 2005 respectively. She is presently an assistant professor at Cairo University, Egypt. Her current field of interest is wireless communication and channel estimation. Hebat-Allah M. Mourad received her B.Sc., M. Sc. and Ph.D. degrees in electrical communication engineering from Cairo University, Egypt, in 1983, 1987 and 1994 respectively. Since 1983, she has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently associate professor there. Her research interests include optical fiber communications, mobile and satellite communications. Emad K. Al-Hussaini received his B.Sc degree in Electrical Communication Engineering from Ain-Shams University, Cairo, Egypt, in 1964 and his M.Sc and Ph.D. degrees from Cairo University, Giza, Egypt, in 1974 and 1977, respectively. From 1964 to 1970, he was with the General Egyptian Aeroorganization. Since 1970, he has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently professor there. He was a research fellow at Imperial College, London, UK, and at the Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA, USA, in the academic years 1976/1977 and 1981/1982, respectively. In 1990, he received the Egyptian national encouragement award for outstanding engineering research. He has written several papers for technical international journals and conferences. His research interests include signal processing, fading channel communication, modulation, and cellular mobile radio systems. Dr Al-Hussaini is a senior member of IEEE. He is listed in Marquis Whos Who in the World and in the IBC (International Biographical Center, Cambridge) for outstanding people of the 20th century.  相似文献   

3.
In this paper, a multi-carrier code division multiple access (MC-CDMA) downlink mobile communication system employing pre-rake and dual transmit diversity is proposed. It combines high spectral efficiency with an immunity to channel dispersion and fading. It also ensures small size, cost and power consumption of the terminal. Theoretical and simulation results for the system under consideration are obtained. Depicted results show appreciable improvements of the proposed system over those previously known.Emad K. Al-Hussaini received his B.Sc degree in Electrical Communication Engineering from Ain-Shams University, Cairo, Egypt, in 1964 and his M.Sc and Ph.D. degrees from Cairo University, Giza, Egypt, in 1974 and 1977, respectively. From 1964 to 1970, he was with the General Egyptian Aeroorganization. Since 1970, he has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently professor there. He was a research fellow at Imperial College, London, UK, and at the Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA, USA, in the academic years 1976/1977 and 1981/1982, respectively. In 1990, he received the Egyptian national encouragement award for outstanding engineering research. He has written several papers for technical international journals and conferences. His research interests include signal processing, fading channel communication, modulation, and cellular mobile radio systems. Dr Al-Hussaini is a senior member of IEEE. He is listed in Marquis Whos Who in the World and in the IBC (International Biographical Center, Cambridge) for outstanding people of the 20th century.Hebat-Allah M.Mourad received her B.Sc, M.Sc and Ph.D degrees in Electrical Communication Engineering from Cairo University, Egypt, in 1983, 1987 and 1994 respectively. Since 1983 she has been with the Electronics and Communications Department, Faculty of Engineering Cairo University and is currently associate professor there. Her research interests include mobile communications, satellite communications and optical fiber communications.Fatma A. Newagy received her B.Sc and M.Sc degrees in electrical communication engineering from Cairo University, Egypt in 1998 and 2002 respectively. Since 1999, she has been a research assistant with the Department of Electronics and Communications, Faculty of Engineering, Cairo University. She is pursuing her Ph.D. there. Her research interests include mobile communications and modulation techniques for spread spectrum and wireless communications.  相似文献   

4.
In this paper, a four-quadrant current-mode multiplier based on a new squarer cell is proposed. The multiplier has a simple core, wide input current range with low power consumption, and it can easily be converted to a voltage-mode by using a balanced output transconductor (BOTA) [1]. The proposed four-quadrant current-mode and voltage-mode multipliers were confirmed by using PSPICE simulation and found to have good linearity with wide input dynamic range. For the proposed current-mode multiplier, the static power consumption is 0.671 mW, the maximum power consumption is 0.72 mW, the input current range is ± 60 μ A, the bandwidth is 31 MHz, the input referred noise current is 46 pA/√Hz, and the maximum linearity error is 3.9%. For the proposed voltage-mode multiplier, the static power consumption is 1.6 mW, the maximum power consumption is 1.85 mW, the input voltage range is ± 1V from ± 1.5V supply, the bandwidth is 25.34 MHz, the input referred noise voltage is 0.85 μV/√Hz, and the maximum linearity error is 4.1%. Mohammed A. Hashiesh was born in Elkharga, New Valley, Egypt, in 1979. He received the B.Sc. degree with honors from the Electrical Engineering Department, Cairo University, Fayoum-Campus, Egypt in 2001, and he received the M.Sc. degree in 2004 from the Electronics and Communication Engineering Department, Cairo University, Egypt. He is currently a Teacher Assistant at the Electrical Engineering Department, Cairo University, Fayoum-Campus. His research interests include analog CMOS integrated circuit design and signal processing, and digitally programmable CMOS analog building blocks. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the B.Sc. degree with honors, the M.Sc. degree and the Ph.D. degree from the Electronics and Communications Department, Cairo University—Egypt in 1994, 1996 and 1999 respectively. He is currently an Assistant Professor at the Electrical Engineering Department, Cairo University, Fayoum-Campus. He has published more than 50 papers. His research and teaching interests are in circuit theory, fully integrated analog filters, high frequency transconductance amplifiers, low voltage analog CMOS circuit design, current-mode analog signal processing and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997–September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo. He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Presently Dr. Soliman is Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters).  相似文献   

5.
Location tracking with distributed HLR's and pointer forwarding   总被引:11,自引:0,他引:11  
Location tracking operations in a personal communications service (PCS) network are expensive. A location tracking algorithm called pointer forwarding has been proposed to reduce the location update cost. The key observation behind forwarding is that if users change PCS registration areas (RAs) frequently, but receive calls relatively infrequently, it should be possible to avoid registrations at the home-location register (HLR) database by simply setting up a forwarding pointer from the previous visitor-location register (VLR). Calls to a given user will first query the user's HLR to determine the first VLR, which the user was registered at, and then follow a chain of forwarding pointers to the user's current VLR. To reduce the “find” cost in call delivery, the PCS provider may distribute HLR databases in the network. This paper integrates the concept of distributed HLRs with pointer forwarding, and the new scheme is referred to as the pointer forwarding with distributed HLR (PFDHLR). Since no registration to the HLR is performed in the pointer forwarding scheme when a user moves to the new locations, the cost of updating multiple HLRs is eliminated in PFDHLR. Our study indicates that PFDHLR may significantly reduce the mobility management cost compared with the single HLR approach  相似文献   

6.
A novel pulse shape is suggested to decrease the Inter-Carrier Interference (ICI) in an Orthogonal Frequency Multiplexing System (OFDM) due to frequency offset. Furthermore several Nyquist- I pulses recently found are also used for the same purpose. Simulation results are compared for the average ICI and for the signal to interference ratio (SIR) for the pulses under consideration. The sensitivity of the ICI to the used pulse shape and the effectiveness of the proposed pulse shape are reported. Hebat-Allah M. Mourad received her B.Sc., M. Sc. and Ph.D. degrees in electrical communication engineering from Cairo University, Egypt, in 1983, 1987 and 1994 respectively. Since 1983, she has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently associate professor there. Her research interests include optical fiber communications, mobile and satellite communications.  相似文献   

7.
In this paper, blind adaptive multiuser detection (MUD) technique is developed for uplink transmission in multiuser space diversity DS-CDMA system to overcome multipath fading effect and multiple access interference. The system consists of a space diversity, a precombining blind adaptive detector (PBAD), and a weight adaptation technique based on the minimization of the mean output energy (MOE). The bit error rate (BER) performance of this receiver for asynchronous DS-CDMA signals with independent and correlated antenna branches under Nakagami fading channel for BPSK system is evaluated. It has been seen that the use of antenna diversity can yield substantial improvement in performance even if the correlation between the antenna elements is relatively large (up to 0.795). However, the large correlation values pose a significant reduction in the diversity gain in comparison with the zero correlation situation. It has also been confirmed by simulations that the PBAD provides a significant receiver performance in comparison with the RAKE receiver employing antenna diversity. Khodr A. Saaifan Born in lebanon 1978, received B.S.c. degree in electrical and electronics engineering (with honors) from Benha higher institute of technology, Benha, Egypt, in 2001, and the M.S.c. degree in communications from Cairo University, Giza, Egypt, in 2005. He is currently pursuing for the Ph.D. degree at the Cairo University. His current research interest includes space–time-coded transmission, multiple-input multiple-output (MIMO) systems, fading channels, equalization, turbo (iterative) processing, and wideband code division multiple access (WCDMA). Emad K. Al-Hussaini received his B.Sc degree in Electrical Communication Engineering from Ain-Shams University, Cairo, Egypt, in 1964 and his M.Sc and Ph.D. degrees from Cairo University, Giza, Egypt, in 1974 and 1977, respectively. From 1964 to 1970, he was with the General Egyptian Aeroorganization. Since 1970, he has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently professor there. He was a research fellow at Imperial College, London, UK, and at the Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA, USA, in the academic years 1976/1977 and 1981/1982, respectively. In 1990, he received the Egyptian national encouragement award for outstanding engineering research. He has written several papers for technical international journals and conferences. His research interests include signal processing, fading channel communication, modulation, and cellular mobile radio systems. Dr Al-Hussaini is a senior member of IEEE. He is listed in Marquis Who's Who in the World and in the IBC (International Biographical Center, Cambridge) for outstanding people of the 20th century.  相似文献   

8.
This paper presents a novel CMOS low-voltage and low-power positive second-generation current conveyor (CCII+). The proposed CCII+ uses two n-channel differential pairs instead of the complementary differential pairs; i.e. (n-channel and p-channel), to realize the input stage. This solution allows almost a rail-to-rail input and output operation; also it reduces the number of current mirrors needed in the input stage. The CCII+ is operating at supply voltages of ±0.75 V with a total standby current of 133 μA. The application of the proposed CCII+ to realize a MOS-C second order maximally flat low-pass filter is given. PSpice simulation results for the proposed CCII+ and its application are given. Ahmed H. Madian was born in Jeddah, Saudi Arabia in 1975. He received the B.Sc. degree with honors, and the M.Sc. degree in electronics and communications from Cairo University, Cairo, Egypt, in 1997, and 2001 respectively. He is currently a Research Assistant in the Electronics Engineering Department, Micro-Electronics Design Center, Egyptian Atomic Energy Authority, Cairo, Egypt. His research interests are in circuit theory; low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed/digital applications on filed programmable gate arrays. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the BSc degree with honors in 1994, the MSc degree in 1996, and the PhD degree in 1999, all from the Electronics and Communications Department, Cairo University, Egypt. He is currently an Associate Professor at the Electrical Engineering Department, Fayoum University, Egypt. He is currently also a visiting Associate Professor at the Electrical and Electronics Engineering Department, German University in Cairo, Egypt. In 2005, He was decorated with the Science Prize in Advanced Engineering Technology from the Academy of Scientific Research and technology. His research and teaching interests are in circuit theory, fully-integrated analog filters, high-frequency transconductance amplifiers, low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964,the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997-September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985-1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987-1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo.He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In November 2005, Dr Soliman gave a lecture at Nanyang Technological University, Singapore.Dr Soliman was also invited to visit Taiwan and gave lectures at Chung Yuan Christian University and at National Central University of Taiwan. In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems. Dr Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004-Now.  相似文献   

9.
This paper presents a new CMOS fully differential current feedback operational amplifier (FDCFOA). The proposed CMOS realization of the FDCFOA is based on a novel class AB fully differential buffer circuit. Besides the proposed FDCFOA circuit is operating at supply voltages of ±1.5 V, it has a total standby current of 400 A. The applications of the FDCFOA to realize variable gain amplifier, fully differential integrator, and fourth order fully differential maximally flat low pass filter are given. The fourth order filter provides 8 dB gain and a bandwidth of 4.3 MHz to accommodate the wideband CDMA standard. The proposed FDCFOA and its applications are simulated using CMOS 0.35 m technology.Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the B.Sc. degree with honors, the M.Sc. degree and the Ph.D. degree from the Electronics and Communications Department, Cairo University—Egypt in 1994, 1996 and 1999 respectively. He is currently an Assistant Professor at the Electrical Engineering Department, Cairo University, Fayoum-Campus. His research interests include low voltage analog CMOS circuit design, filtering and applications suitable for VLSI.Inas Awad was born in Cairo, Egypt, in 1971. She received the Bachelor, the M.Sc. and the Ph.D. degrees in Electronics and Communications from Cairo University in 1994, 1997 and 2000, respectively. In 1995, she joined the department of Electronics and Communications, Cairo University, Fayoum-Campus as a teaching assistant and now she is an Assistant Professor at the same department. Her primary research interest is in analog circuits with particular emphasis on current-mode approach and low-voltage low-power CMOS designs.  相似文献   

10.
Although Constant Modulus Algorithm (CMA) is effective to equalize non-minimum phase channels blindly, it suffers from residual intersymbol interference (ISI) and large Mean Square Error (MSE) when applied to higher order constellations (QAM). Methods based on cost function matched to the signal constellation namely alphabet matched algorithm (AMA) were previously reported and proves its superiority on CMA concerning the MSE. Thus dual mode algorithms between CMA and AMA were introduced. A hybrid technique combining CMA and AMA using a cosine square function as a constellation matched error (CME) was lately reported. In this paper two different CME functions are introduced. The MSE of the proposed algorithms are calculated using Matlab simulation under multipath slow fading channels for different signal to noise ratios (SNR) and different levels of QAM constellations. A comparison is established among them. Depicted results show the effectiveness of the two proposed CME functions. Hebat-Allah M. Mourad received her B.Sc., M.Sc. and Ph.D. degrees in electrical communication engineering from Cairo University, Egypt, in 1983, 1987 and 1994 respectively. Since 1983, she has been with the Department of Electronics and Communications, Faculty of Engineering, Cairo University, and is currently associate professor there. Her research interests include optical fiber communications, mobile and satellite communications.  相似文献   

11.
In this paper a new realization of the differential input balanced output current opamp is proposed, operating with ±1.5 V supplies. Its architecture is based on the use of current inverters to sense the input currents while providing a very low input resistance, 23 Ω. The opamp provides a maximum output swing of 700 μA, with an input offset current of 3.5 nA. The differential gain achieved is 65.5 dB, and the differential structure adopted in the design provided a high CMRR, 89.5 dB, the proposed circuit is compared to other realizations with single and differential inputs. The applications of the current opamp are exploited some new applications are presented such as: MOSFET-C integrators, full non-linearity cancellation for MOS transistors, and finally a digitally tuned current-mode variable gain amplifier, which has a gain tuning range of 25 dB with a 0.05 dB step.Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA, U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering.He is currently Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo.He was a visiting scholar at Bochum University, Germany (Summer, 1985) and with the Technical University of Wien, Austria (Summer, 1987).In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr. Soliman is a member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Presently Dr. Soliman is Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters).  相似文献   

12.
We propose an auxiliary strategy, calledper-user forwarding, for locating users who move from place to place while using Personal Communications Services (PCS). The forwarding strategy augments the basic location strategy proposed in existing standards such as GSM and IS-41, with the objective of reducing network signalling and database loads in exchange for increased CPU processing and memory costs. The key observation behind forwarding is that if users change PCS registration areas frequently but receive calls relatively infrequently, it should be possible to avoid registrations at the Home Location Register (HLR) database, by simply setting up a forwarding pointer from the previous Visitor Location Register (VLR). Calls to a given user will first query the user's HLR to determine the first VLR which the user was registered at, and then follow a chain of forwarding pointers to the user's current VLR. We use a reference PCS architecture and the notion of a user'scall-to-mobility ratio (CMR) to quantify the costs and benefits of using forwarding and classes of users for whom it would be beneficial. We show that under a variety of assumptions forwarding is likely to yield significant net benefits in terms of reduced signalling network traffic and database loads for certain classes of users. For instance, under certain cost assumptions, for users withCMR<0.5, forwarding can result in 20–60% savins over the basic strategy. This net benefit is due to the significant saving in location update compared to a penalty of moderately increased call setup times for the infrequent occasions when these users do receive calls.  相似文献   

13.
For a IPCS network to effectively deliver services to its mobile users, it must have an efficient way to keep track of the mobile users. The location management fulfills this task through location registration and paging. To reduce the signaling traffic, many schemes such as a local anchor (LA) scheme, per-user caching scheme and pointer forwarding scheme have been proposed in the past. In this paper, we present a new location management scheme which intends to mitigate the signaling traffic as well as reduce the tracking delay in the PCS systems. In this strategy, we choose a set of visitor location registers (VLRs) traversed by users as the mobility agents (MA), which form another level of management in order to make some registration signaling traffic localized. The idea is as follows: instead of always updating to the home location register (HLR), which would become the bottleneck otherwise, many location updates are carried out in the mobility agents. Thus, the two-level pointer forwarding scheme is designed to reduce the signaling traffic: pointers can be set up between VLRs as the traditional pointer forwarding scheme and can also be set up between MAs. The numerical results show that this strategy can significantly reduce the network signaling traffic for users with low CMR without increasing much of the call setup delay.  相似文献   

14.
A new transformation method is proposed and used to transform op-amp-RC circuits to G m -C ones with only grounded capacitors. The proposed method enables the generation of high-performance G m -C filters that benefit from the advantages of good and well-known op-amp-RC structures and at the same time feature electronic tunability, high frequency capability and monolithic integration ability. An attractive feature of the proposed method is that it results in G m -C structures with only grounded capacitors in spite of the presence of floating capacitors in the original op-amp-RC circuits. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA, U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997–September 2003, Dr. Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo. He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In November 2005, Dr. Soliman gave a lecture at Nanyang Technological University, Singapore. Dr. Soliman was also invited to visit Taiwan and gave lectures at Chung Yuan Christian University and at National Central University of Taiwan. In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr. Soliman is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems. Dr. Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr. Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004–Now.  相似文献   

15.
An overlay smart spaces system, called MITOS, is proposed for managing the use of the resources in wireless local area networks (WLAN). MITOS monitors the traffic load distribution in the different WLAN segments, as well as the location of each user, and when necessary, suggests to specific users to change their location in order to improve their quality of service. Enhancements to the basic MITOS architecture are introduced to intelligently manage local congestion, and maintain an almost uniform load level across the network. The approach used for load balancing is based on game theoretic mechanisms, such as the solutions to the Santa Fe Bar Problem. Simulation results are provided showing the efficiency of the proposed system. The research of the author for his PhD studies is supported by the Alexander S. Onassis Foundation Scholarship Programme. George Alyfantis received his B.Sc. degree in Informatics and Telecommunications from the Department of Informatics and Telecommunications, University of Athens, Athens Greece, in 2002. He received his M.Sc. degree in Communication and Network Systems from the same Department, in 2003. Since 2001, he is a member of the Communication Networks Laboratory (CNL) of the University of Athens. Currently, he is working towards his Ph.D. thesis. His research interests include pervasive/mobile computing, middleware for wireless sensor networks, web caching performance and game theory. He is the author of 5 papers in the aforementioned areas. In the course of his studies he received numerous distinctions like the Alexandros Onassis Foundation Scholarship for his Ph.D. studies, the best student award of the Department of Informatics and Telecommunications for graduating first in his B.Sc./M.Sc. class and the best M.Sc. thesis Ericsson Award of Excellence in Telecommunications 2004. Stathes Hadjiefthymiades received his B.Sc. (honors) in Informatics from the Department of Informatics at the University of Athens, Greece, in 1993 and his M.Sc. (honors) in Informatics (Advanced information systems) from the same department in 1996. In 1999 he received his Ph.D. from the University of Athens (Department of Informatics and Telecommunications). In 2002 he received a joint engineering-economics M.Sc. degree from the National Technical University of Athens. In 1992 he joined the Greek consulting firm Advanced Services Group, Ltd., where he was involved in the analysis and specification of information systems and the design-implementation of telematic applications. In 1995 he became a member of the Communication Networks Laboratory (UoA-CNL) of the University of Athens. During the period September 2001–July 2002, he served as a visiting assistant professor at the University of Aegean, Department of Information and Communication Systems Engineering. On the summer of 2002 he joined the faculty of the Hellenic Open University (Department of Informatics), Patras, Greece, as an assistant professor. Since December 2003, he is in the faculty of the Department of Informatics and Telecommunications, University of Athens, where he is presently an assistant professor. He is coordinating the Pervasive Computing Research Group of the Dept. of Informatics and Telecommunications at the University of Athens. He has participated in numerous projects realized in the context of EU programs (ACTS, ORA, TAP, and IST), EURESCOM projects, as well as national initiatives. His research interests are in the areas of web engineering, wireless/mobile computing, and networked multimedia applications. He is the author of over 80 publications in the above areas. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was in the faculty of the Electrical Engineering and Computer Science Department University of Connecticut, Storrs. From 1986 to 1994 he was in the faculty of the Electrical and Computer Engineering Department, Northeastern University, Boston, MA. During the period 1993–1994, he served as director of the Communications and Digital Processing Research Center, Northeastern University. During the summers of 1990 and 1991, he was a visiting scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a professor in the Department of Informatics and Telecommunications, and director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies and Services (ACTS) and Information Society Technologies (IST) programs funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE, E2R, LIAISON). His research interests are in the design and performance analysis of communication networks, and wireless/mobile communication systems and services. He has authored more than 190 papers in the above areas. Dr. Merakos is chairman of the board of the Greek Universities Network, the Greek Schools Network, and member of the board of the Greek Research Network. In 1994, he received the Guanella Award for the best paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

16.
A new circuit employing second-generation current conveyors (CCIIs), and unmatched resistors for converting a grounded immittance to the corresponding floating immittance with either positive or negative adjustable multiplier, is presented. Moreover, the proposed circuit can also realize a synthetic floating inductance employing a grounded capacitor depending on the passive element selection. Simulation results using 0.35 μ m TSMC CMOS technology parameters are given. Erkan Yuce was born in 1969 in Nigde, Turkey. He received the B.Sc. from Middle East Technical University and M.Sc. degrees from Pamukkale University in 1994 and 1998 respectively. He is a Ph.D. student at Bogazici University all in Electrical and Electronics Engineering. He is currently Research Assistant at the Electrical and Electronics Engineering Department of Bogazici University. His current research interests include analog circuits, active filters, synthetic inductors, and current-mode circuits. He is the author or co-author of about 10 papers published in scientific journals or conference proceedings. Oguzhan Cicekoglu was born in 1963 in Istanbul, Turkey. He received the B.Sc. and M.Sc. degrees from Bogazici University and the Ph.D. degree from Istanbul Technical University all in Electrical and Electronics Engineering in 1985, 1988 and 1996 respectively. He served as lecturer at the School of Advanced Vocational Studies Electronics Prog. of Bogazici University where he held various administrative positions between 1993 and 1999, and as part time lecturer at various institutions. He was with Biomedical Engineering Institute between 1999 and 2001. He is currently Associate Professor at the Electrical and Electronics Engineering Department of Bogazici University. His current research interests include analog circuits, active filters, analog signal processing applications and current-mode circuits. He is the author or co-author of about 150 papers published in scientific journals or conference proceedings. Oguzhan Cicekoglu is a member of the IEEE. Shahram Minaei received his B.Sc. degree in Electrical and Electronics Engineering from Iran University of Science and Technology in 1993. He received his M.Sc. and Ph.D. degrees in Electronics and Communication Engineering from Istanbul Technical University in 1997 and 2001, respectively. He is currently an Associate Professor at the Electronics and Communication Engineering Department of Dogus University in Istanbul, Turkey. He has more than 50 journal or conference papers in scientific review. He served as reviewer for a number of international journals and conferences. His current field of research concerns current-mode circuits and analog signal processing. Shahram Minaei is a member of the IEEE.  相似文献   

17.
A classical Wien-type sinusoidal oscillator is analyzed to explain the origin of its latchup behavior. Only when a correct nonlinear model of the oscillator is derived and the stability of all equilibrium points associated with each region of operation of the fundamentally nonlinear amplifier characteristics is studied can this phenomena be predicted. It is further shown how latchup can be eliminated. Ahmed S. Elwakil was born in Cairo, Egypt. He received his B.Sc. and M.Sc. degrees from Cairo University and his Ph.D. from the National University of Ireland, all in Electrical and Electronic Engineering. His main research interests are in the area of analog electronic circuit design with particular emphasis on nonlinear circuit analysis and design techniques, nonlinear dynamics and chaos theory. He is author and co-author of more than 70 publications in these areas. Dr. Elwakil is a senior member of IEEE, a member of the IEEE technical committee on nonlinear circuits and systems, a member of IEE, an associate member at the centre for chaos control at the City University of Hong Kong and an associate member at the International centre for Theoretical Physics. He has held several academic visiting positions and has acted as an instructor for two courses on VLSI organized by the United Nations University. He has served as a scientific committee member for many conferences and as a reviewer for numerous journals and conferences. Dr. Elwakil received the Government of Egypt first class medal for achievement in engineering sciences in 2003.  相似文献   

18.
江虹  陆斌  刘辉  李乐民 《通信学报》2004,25(9):140-145
鉴权管理是移动通信移动管理中非常重要的技术,其策略的选择将直接影响网络中各网元的信令负荷。本文主要讨论移动通信系统前向指针位置管理策略中的鉴权管理。当用户在远离其HLR的不同VLR对应覆盖区域移动时,系统通过向其原VLR索取剩余鉴权数据或向其HLR申请新鉴权数据来实现用户的鉴权管理。通过鉴权开销及被呼处理时延等指标的分析,本文提出的鉴权管理算法较适合于CMR较小的MS鉴权管理;当MS的CMR增大时,本文提出的鉴权管理算法与二层管理策略如GSM或IS-41移动系统的开销及时延等指标逐渐接近。  相似文献   

19.
In this paper we are concerned with broadband wireless access via high altitude platform system, providing the Internet access and broadband multimedia services to passengers equipped with WLAN terminals connecting through a collective terminal mounted on the train. The main challenge in such scenario is the development of efficient and reliable radio interface for the broadband communication link in the mobile wireless access segment. We are focusing on performance analysis of the adaptive coding and modulation scheme in the communication link between a high altitude platform and a collective terminal on-board moving train. In order to increase the reliability of the communication system in a fading environment we also exploit space and platform diversity. The proposed approach significantly increases the throughput of the wireless access system, while bit error rate remains below the target value regardless of the considered propagation environment.Tomaz Javornik received his B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from the University of Ljubljana, Slovenia, in 1987, 1990 and 1993, respectively. He joined the Jozef Stefan Institute in 1987, where he currently works as a researcher in the Department of Digital Communications and Networks. He is involved in the study of digital radio-relay systems, modulation techniques, coding, adaptive signal processing and digital mobile communication systems.Mihael Mohorcic received B.Sc., M.Sc. and Ph.D. degrees in Electrical Engineering from the University of Ljubljana, Slovenia, in 1994, 1998 and 2002, respectively, and M.Phil. degree in Electrical Engineering from University of Bradford, UK, in 1998. He is a research fellow in the Department of Digital Communications and Networks at the Jozef Stefan Institute. In 1996/1997 he spent 12 months as a Visiting Scientist at University of Bradford, Bradford, UK. His research interests include development and performance evaluation of network protocols and architectures for mobile and wireless communication systems, and resource management in satellite and high altitude platforms networks with the emphasis on routing algorithms and traffic engineering. He is a member of IEEE.Ales Svigelj received his B.Sc., M.Sc. and Ph.D. degrees in Electrical Engineering from the University of Ljubljana, Ljubljana, Slovenia, in 1997, 2000 and 2003 respectively. He is a research associate in the Department of Digital Communications and Networks at the Jozef Stefan Institute. In 2000/2001 he spent one year as a visiting researcher at Leeds Metropolitan University in Leeds, UK. He has participated in several national and international projects. His research interests concern the development of telecommunications systems, network protocols and architectures for satellite, high altitude platforms and terrestrial mobile communication systems. In 2004 he was awarded with The Jozef Stefan Golden Emblem Prize for outstanding contributions made to science in Doctoral theses in the field of natural sciences in Slovenia.Igor Ozimek received his B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from the University of Ljubljana, Slovenia in 1980, 1988 and 1993, respectively. Since 1980 he has been with the Jozef Stefan Institute, Ljubljana, where he works as a researcher. His current interests include digital communications,DSP processing and computer networks.Gorazd Kandus received B.Sc., M.Sc. and Ph.D. degrees in Electrical Engineering from the University of Ljubljana, Ljubljana, Slovenia, in 1971, 1974 and 1991, respectively. He is currently the head of the Department of Digital Communications and Networks at the Jozef Stefan Institute and a Professor at the Faculty of Electrical Engineering, Computer Science and Information Technology, University of Maribor. He spent one year at Worchester Polytechnic Institute, Worchester, MA, as a Fulbright Fellow and 5 months as a Visiting Scientist at the University of Karlsruhe, Germany. His main research interests include design and simulation of mobile and wireless communication systems and development of new telecommunication services. He is a member of IEEE and Upsilon Pi Epsilon.  相似文献   

20.
One of the main challenges in personal communication service (PCS) is to locate many mobiles that may move frequently from place to place. Such a system operation is called location tracking. Many network signals flow, and database queries are required to achieve such a task. In addition to the two-level hierarchical strategy in IS-41 and GSM, several strategies have been proposed to improve the efficiency of location tracking. Pointer forwarding was used to reduce the expensive home location register (HLR) accesses. Previously, the distributed HLR scheme was proposed to prevent the HLR from becoming a bottleneck in the signaling network. However, the length of a forwarding pointer chain may be lengthened in a distributed HLR environment. We propose a more efficient strategy to overcome this potential problem. This strategy attempts to migrate the locating chains in a distributed HLR system when a mobile issues a registration operation. As a consequence, the length of any forwarding pointer chain does not exceed one in our strategy. Simulation results indicate that our strategy significantly decreases the locating cost. In fact, this strategy provides an upper bound of location tracking time owing to the fact that the length of any locating path does not exceed one. Furthermore, obsolete entries in local databases visitor location registers can be reclaimed in this strategy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号