首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
致密层作为钙钛矿太阳电池的重要组成部分, 对其制备方法, 工艺及微结构等性质的研究对提高钙钛矿太阳电池的光伏性能具有重要影响. 本文利用介稳态的TiCl4醇水溶液作为前驱体溶液, 通过旋涂水解制备TiO2致密层, 并研究了前驱体溶液不同醇水比对致密层微结构及其相应太阳电池光伏性能的影响. 结果表明, 将2 mol.L-1的TiCl4的水溶液按醇水体积比3:1的比例用异丙醇稀释后所制备的TiO2致密层其厚度为126 nm, 且相应的太阳电池取得最高的光电转换效率10.6 %.  相似文献   

2.
TiO2基染料敏化太阳能电池的表面修饰及性能研究   总被引:1,自引:1,他引:0  
采用水热法制备TiO2浆料,用La(NO3)3溶 液浸泡TiO2薄膜获得修饰电极。用X射线光电子能谱(XPS) 和扫描电子显微镜(SEM)对修饰电极的主要成分及形貌进行表征的结果显示,电极薄膜分为 上下两层,表 面包覆层粒径较大,为La2O3颗粒;下层颗粒粒径较小,为TiO2颗粒。电流-电压测 试结果显示,与修饰 前相比,用La(NO3)3溶液浸泡30min获得的膜电极性能最优,使 开路电压和短路电流分别提高了6.8%和 18.5%。电化学阻抗谱(EIS)测试结果表明,相同偏压下,TiO2/La 2O3电极界面复合电阻比TiO2要大,说明 La2O3包覆层在一定程度上抑制了界面的电子复合,改善了电池的光电化学性能。  相似文献   

3.
本文首次通过旋涂热解偏钨酸铵((NH4)6H2W12O40)的DMF/水溶液成功制备了致密的三氧化钨(WO3)薄膜, 系统研究了WO3薄膜厚度及用异丙醇冲洗处理气相辅助溶液法制备的CH3NH3PbI3薄膜对相应钙钛矿太阳电池光伏性能的影响. 结果表明, 使用厚度为62nmWO3致密层的平板钙钛矿太阳电池获得了短路电流密度17.39 mA.cm-2, 开路电压0.58 V, 填充因子0.57, 相应光电转化效率5.72%. 使用异丙醇冲洗CH3NH3PbI3薄膜后, 相应太阳电池的光电转化效率由5.72 % 升高到7.04 %.  相似文献   

4.
盛立军 《光电子.激光》2017,28(11):1186-1190
采用热压法将TiO2按一定计量比掺入AB混合胶制备折射胶层,在芯片和荧光粉胶层 间利用甩胶旋 涂工艺添加折射胶层,封装成白光数码管;对样品的光色性能进行了测试和机 理分析。结 果表明,折射层中掺杂TiO2颗粒浓度为0.3%时,白光数码管单笔段 光通量达到了最高值175 lm,比TiO2浓度为0%时提高了约为7.5%。在相同测试条件下,掺杂0.3%浓度TiO2颗粒的倒装白光数码管比传统点胶 白光数码管平均光通量提高了约为6.5%,平均色温下降约为 9.6%,出光一致性更理想。TiO2颗粒的掺入不 仅提高了器件光通量,降低了色温,同时为白光数码管实现远程荧光粉涂覆工艺提供了一种 有效的途径。  相似文献   

5.
低温处理的TiO2纳米颗粒薄膜作为缓冲层的有机光伏电池   总被引:1,自引:1,他引:0  
通过溶胶凝胶法(sol-gel)合成了TiO2纳米颗 粒(NPs),制备了结构为 ITO/PEDOT:PSS/P3HT:PCBM/TiO2/Al的有机太阳能电池(OSC)器件。通过优化阴极缓冲 层TiO2NPs的 热处理温度,考察了温度以及溶剂对TiO2NPs薄膜的光学性能、形貌结构和电学 性能的影响,并研究了其对OSC性能的影响及作用机理。实验发现,TiO2NPs处理温度 为80℃时,器件 的效率达到了2.52%。相对于参比器件,器件的光电转换效率(PCE) 、填充因子(FF)分别提高了60%、64.7%。  相似文献   

6.
采用电子束沉积技术在石英玻璃、硅片基板上沉积了TiO2薄膜,利用热蒸发技术在TiO2薄膜表面沉积了不同厚度的Ag膜,研究了Ag膜厚度对TiO2薄膜结构、形貌、光学和光催化 性能的影响。利 用紫外-可见分光光度计(UV-VIS)、X射线衍射仪(XRD)、冷场发射电子显微镜(SEM)对沉积 后的薄膜分别 进行光学、结构、形貌分析。利用能谱仪测定了元素成分及含量。用光催化降解亚甲基橙(M O)的速率评 价了合成的Ag-TiO2的光催化性能。结果表明:Ag纳米粒子在TiO2表面均匀分布;制备 的Ag修饰多孔TiO2纳米薄膜具有优异的光催化性能。测试结果表明:在250 ℃下制备的T iO2薄膜为无定形结构;随着Ag膜厚度 的增加,样品的光催化活性提高。当Ag膜厚度为3.7 nm时,光催化活 性最高;与纯TiO2相比,Ag-TiO2具有更高的光催化活性。  相似文献   

7.
碳电极具有成本低、印刷方便、可有效隔离水氧等优点,因此有望利用碳电极材料实现低成本、高稳定性的钙钛矿太阳电池。无空穴传输层的传统碳基钙钛矿太阳电池面临着空穴提取率低、电子逆向传输,钙钛矿和碳电极界面的载流子复合等问题。文章引入聚(3-己基噻吩)(P3HT)作为器件的空穴传输层,使碳基钙钛矿太阳电池ITO/SnO2/MAPbI3/P3HT/Carbon的光伏性能得到了显著改善:器件的光电转化效率从11.16% 提高到13.37%。在氮气环境下,连续光照1000h,太阳电池的光电转化效率可保持初始值的87%,而传统器件在光照500h后,其光电转化效率已下降至初始值的60%。  相似文献   

8.
局部表面等离子共振广泛应用于光催化和太阳能 电池等领域。采用电子束和热沉积技 术,在融石英和Si片上制备了Ag@SiO2/TiO2薄膜。在300 ℃,400 ℃,500 ℃,600 ℃ 温度下,薄膜在空气氛围下退火2h。采用拉曼光谱仪,紫外-可见分光光度 计(UV-Vis)等手段对微结构,光学性能等特性进行了表征。利用能谱仪测定了元素成分及含 量。考察了薄膜在水溶液中降解甲基橙的光催化活性。结果表明:Ag@SiO2/TiO2薄膜具有优 异的光催化性能。测试结果表明:在250℃下制备的TiO2薄膜为无定形结构;在本实验条 件下,随着退火温度的升高,薄膜呈锐钛矿结构;锐钛矿相表现出了更好的光催化性能。  相似文献   

9.
结合水热法和阳极氧化法合成了Sb2S3/TiO2纳米管异质结阵列,采用场发射扫描电子显微镜、X射线衍射谱表征了异质结阵列的形貌和晶体结构。暗态下的电流-电压曲线表明Sb2S3/TiO2纳米管异质结阵列具有整流效应。相比于纯的TiO2纳米管阵列,Sb2S3/TiO2纳米管异质结阵列的光电性能有了显著的提升:在AM 1.5标准光强作用下,光电转换效率从0.07%增长到0.40%,表面光电压响应范围从紫外光区拓宽至可见光区。结合表面光电压谱和相位谱,分析了Sb2S3/TiO2纳米管异质结阵列中光生载流子的分离和传输性能。 更多还原  相似文献   

10.
锑基薄膜太阳电池具有原材料丰富、制备方法简单 和光电性能优异等优势。将宽带隙 Sb2S3电池与窄带隙Sb2Se3电池组成叠层太阳电池能够进一步提高光谱能量利用率 ,增强器 件性能。基于此,采用wx-AMPS软件对锑基双结叠层薄膜太阳电池进行了仿真优化。仿 真结果显示,要想获得高效的叠层太阳电池首先需要高质量的吸收层,吸收层缺陷态要低于 1015 cm-3才能够将光生载流子充分转换为电流。除此 之外,子电池厚度的调制能够平衡顶 底电池的光谱响应,在叠层太阳电池的优化中也十分重要。基于此,绘制了不同顶底电 池厚度叠层太阳电池性能参数的等高线图,为叠层太阳电池的实验优化制备提供指导,并最 终在顶底电池厚度分别为700 nm和2500 nm的情况下,得到24.60%的锑基双结叠层太阳电 池 的最高光电转换效率。研究结果体现了新型锑基薄膜叠层太阳电池结构的优势和发展 潜力。  相似文献   

11.
Recently, perovskite solar cells have attracted tremendous research interest due to their amazing light to electric power conversion efficiency (PCE). However, most high performance devices usually use mesoporous TiO2 as the electron transport layer (ETL), which increases cost for practical application. Here, TiO2/SnOxCly double layer was employed as the ETL for planar perovskite solar cells. Compared with bare TiO2, perovskite solar cell based on TiO2/SnOxCly shows drastically improved power conversion efficiency and reduced hysteresis. These improvements are attributed to TiO2/SnOxCly which could enhance electron extraction and reduce surface trap-state.  相似文献   

12.
A series of perovskite-based solar cells were fabricated wherein a compact layer (CL) of TiO2 of varying thickness (0–390 nm) was introduced by spray pyrolysis deposition between fluorine-doped tin oxide (FTO) electrode and TiO2 nanoparticle layer in perovskite-based solar cells. Investigations of the CL thickness-dependent current density–voltage (J–V) characteristics, dark current, and open circuit voltage (Voc) decays showed a similar trend for thickness dependence. A CL thickness of 90 nm afforded the perovskite-based solar cell with the maximum power conversion efficiency (η, 3.17%). Furthermore, two additional devices, perovskite-based solar cell omitting hole transporting materials layer and cell without the TiO2 nanoparticles, were designed and fabricated to study the influence of the CL thickness on different electron transport paths in perovskite-based solar cells. Solar cells devoid of TiO2 nanoparticles, but with perovskite and organic hole-transport materials (HTMs), exhibited sustained improvement in photovoltaic performances with increase in the thickness of CL, which is in contrast to the behavior of classical perovskite-based solar cell and common solid state solar cell which showed optimal photovoltaic performances when the thickness of CL is 90 nm. These observations suggested that TiO2 nanoparticles play a significant role in electron transport in perovskite-based solar cells.  相似文献   

13.
Perovskite solar cells typically use TiO2 as charge extracting materials, which reduce the photostability of perovskite solar cells under illumination (including ultraviolet light). Simultaneously realizing the high efficiency and photostability, it is demonstrated that the rationally designed iron(III) oxide nanoisland electrodes consisting of discrete nanoislands in situ growth on the compact underlayer can be used as compatible and excellent electron extraction materials for perovskite solar cells. The uniquely designed iron(III) oxide electron extraction layer satisfies the good light transmittance and sufficient electron extraction ability, resulting in a promising power conversion efficiency of 18.2%. Most importantly, perovskite solar cells fabricated with iron(III) oxide show a significantly improved UV light and long‐term operation stabilities compared with the widely used TiO2‐based electron extraction material, owing to the low photocatalytic activity of iron(III) oxide. This study highlights the potential of incorporating new charge extraction materials in achieving photostable and high efficiency perovskite photovoltaic devices.  相似文献   

14.
As the key component in efficient perovskite solar cells, the electron transport layer (ETL) can selectively collect photogenerated charge carriers produced in perovskite absorbers and prevent the recombination of carriers at interfaces, thus ensuring a high power conversion efficiency. Compared with the conventional single‐ or dual‐layered ETLs, a gradient heterojunction (GHJ) strategy is more attractive to facilitate charge separation because the potential gradient created at an appropriately structured heterojunction can act as a driving force to regulate the electron transport toward a desired direction. Here, a SnO2/TiO2 GHJ interlayer configuration inside the ETL is reported to simultaneously achieve effective extraction and efficient transport of photoelectrons. With such an interlayer configuration, the GHJs formed at the perovskite/ETL interface act collectively to extract photogenerated electrons from the perovskite layer, while GHJs formed at the boundaries of the interconnected SnO2 and TiO2 networks throughout the entire ETL layer can extract electron from the slow electron mobility TiO2 network to the high electron mobility SnO2 network. Devices based on GHJ ETL exhibit a champion power conversion efficiency of 18.08%, which is significantly higher than that obtained from the compact TiO2 ETL constructed under the comparable conditions.  相似文献   

15.
The effect of the presence of unreacted PbI2 on the perovskite solar cells efficiency is reported. N,N‐Dimethylformamide vapor treatment is introduced to study the influence of complete conversion to a power conversion efficiency of the device. It is discovered that the optimized morphology of the PbI2 under layer is essential to form a dense perovskite layer preventing recombination by direct contact between TiO2 and a hole transporting layer, and to increase the charge collection efficiency. The present findings provide an insight into the morphology and growth mechanism of perovskite layer, the correlation between the device performance, and the film deposition process.  相似文献   

16.
A novel scaffold layer composed of TiO2-ZrO2 composite was fabricated for perovskite solar cell. Compared with pure TiO2 nanoparticles (NPs), the relatively larger ZrO2 NPs could increase film roughness and enhance light-scattering effect in TiO2-ZrO2 composite films. The device exhibited outstanding power conversion efficiency (PCE) of 11.41%. The morphology and aggregation of particles, three-dimensional roughness, as well as the ingredient and micro-structure of FTO/compact TiO2/TiO2-ZrO2 was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), respectively. Moreover, the optical property of TiO2-ZrO2 films for visible light was characterized by UV–visible absorption spectroscopy (UV–vis), and its influence on quantum yield of the device was further demonstrated by incident photon-to-electron conversion efficiency (IPCE). Owing to the inert oxide, the short-circuit current density of perovskite solar cell using TiO2-ZrO2 composition as scaffold layer increased by 21% compared to the one employing pure TiO2 mesoporous film.  相似文献   

17.
The development of organometal halide perovskite solar cells has grown rapidly and the highest efficiency of the devices has recently surpassed 22%. Because these solar cells contain toxic lead, a sustainable strategy is required to prevent environmental pollution and avoid healthy hazard caused by possible lead outflow. Here, in situ recycling PbI2 from thermal decomposition CH3NH3PbI3 perovskite films for efficient perovskite solar cells was developed. The thermal behavior of CH3NH3PbI3 perovskite and its individual components were examined by thermogravimetric analysis. By optimizing the process of thermal decomposition CH3NH3PbI3 film, the complete conversion from CH3NH3PbI3 to pure PbI2 layer with a mesoporous scaffold was achieved. The mesoporous structure readily promotes the conversion efficiency of perovskite and consequently results in high‐performance device. A perovskite crystal growth mechanism on the mesoporous PbI2 structure was proposed. These results suggest that in situ recycled PbI2 scaffolds can be a new route in manipulating the morphology of the perovskite active layer, providing new possibilities for high performance. Meanwhile, the risk of lead outflow can be released, and the saving‐energy fabrication of efficient solar cells can be realized.  相似文献   

18.
Perovskite‐based solar cells are generally assembled as planar structures comprising a flat organoammonium metal halide perovskite layer, or mesoscopic structures employing a mesoporous metal‐oxide scaffold into which the perovskite material is infiltrated. To present, little attention has been directed toward the texturing of the perovskite material itself. Herein, a textured CH3NH3PbI3 morphology formed through a thin mesoporous TiO2 seeding layer and a gas‐assisted crystallization method is reported. The textured morphology comprises a multitiered nanostructure, which allows for significant improvements in the light harvesting and charge extraction performance of the solar cells. Due to these improvements, average short‐circuit current densities for a batch of 28 devices are in excess of 22 mA cm?2, and the maximum recorded power conversion efficiency is 16.3%. The performance gains concomitant with this textured CH3NH3PbI3 morphology provide further insights into how control of the perovskite microstructure can be used to enhance the cell performance.  相似文献   

19.
《Organic Electronics》2014,15(2):348-355
We report that the power conversion efficiency (PCE) can be enhanced in polymer bulk heterojunction solar cells by inserting an interfacial electron transporting layer consisting of pristine TiO2 or reduced graphene oxide–TiO2 (RGO–TiO2) between the active layer and cathode Al electrode. The enhancement in the PCE has been analyzed through the optical absorption, current–voltage characteristics under illumination and estimation of photo-induced charge carrier generation rate. It was found that either TiO2 or RGO–TiO2 interfacial layers improve the light harvesting, as well as the charge extraction efficiency, acting as a blocking layer for holes, and also reducing charge recombination. The combined enhancement in light harvesting property and charge collection efficiency improves the PCE of the organic solar cell up to 4.18% and 5.33% for TiO2 and RGO–TiO2 interfacial layer, respectively, as compared to a value of 3.26% for the polymer solar cell without interfacial layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号