首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SMORT: Scalable multipath on-demand routing for mobile ad hoc networks   总被引:3,自引:0,他引:3  
L.  S.V.   《Ad hoc Networks》2007,5(2):162-188
Increasing popularity and availability of portable wireless devices, which constitute mobile ad hoc networks, calls for scalable ad hoc routing protocols. On-demand routing protocols adapt well with dynamic topologies of ad hoc networks, because of their lower control overhead and quick response to route breaks. But, as the size of the network increases, these protocols cease to perform due to large routing overhead generated while repairing route breaks. We propose a multipath on-demand routing protocol (SMORT), which reduces the routing overhead incurred in recovering from route breaks, by using secondary paths. SMORT computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes (if exists) to destination. Exhaustive simulations using GloMoSim with large networks (2000 nodes) confirm that SMORT is scalable, and performs better even at higher mobility and traffic loads, when compared to the disjoint multipath routing protocol (DMRP) and ad hoc on-demand distance vector (AODV) routing protocol.  相似文献   

2.
Efficient on-demand routing for mobile ad hoc wireless access networks   总被引:2,自引:0,他引:2  
In this paper, we consider a mobile ad hoc wireless access network in which mobile nodes can access the Internet via one or more stationary gateway nodes. Mobile nodes outside the transmission range of the gateway can continue to communicate with the gateway via their neighboring nodes over multihop paths. On-demand routing schemes are appealing because of their low routing overhead in bandwidth restricted mobile ad hoc networks, however, their routing control overhead increases exponentially with node density in a given geographic area. To control the overhead of on-demand routing without sacrificing performance, we present a novel extension of the ad hoc on-demand distance vector (AODV) routing protocol, called LB-AODV, which incorporates the concept of load-balancing (LB). Simulation results show that as traffic increases, our proposed LB-AODV routing protocol has a significantly higher packet delivery fraction, a lower end-to-end delay and a reduced routing overhead when compared with both AODV and gossip-based routing protocols.  相似文献   

3.
LEO卫星网络中一种安全的按需路由协议   总被引:1,自引:0,他引:1  
彭长艳  张权  唐朝京 《信号处理》2010,26(3):337-346
低地球轨道(LEO)卫星网络的路由是当前卫星通信领域的研究热点,其安全问题也日益受到研究人员的重视。本文通过分析LEO卫星网络按需路由协议面临的安全威胁,使用基于身份的签密方案,提出了一种适合卫星网络拓扑特性的安全的按需路由协议。针对协议的密码算法处理时间开销较大的特点,设计了自适应的概率性延迟验证机制,能够降低协议的平均路由建立时间。安全性分析和仿真实验结果表明,该协议能够抵抗多种外部攻击行为,以有限的路由建立时间和路由开销为代价,保证了稳定的包传输率。   相似文献   

4.
Cigdem  Robin 《Ad hoc Networks》2006,4(3):380-397
On-demand routing protocols for ad hoc networks reduce the cost of routing in high mobility environments. However, route discovery in on-demand routing is typically performed via network-wide flooding, which consumes a substantial amount of bandwidth. In this paper, we present bypass routing, a local recovery protocol that aims to reduce the frequency of route request floods triggered by broken routes. Specifically, when a broken link is detected, a node patches the affected route using local information, which is acquired on-demand, and thereby bypasses the broken link. We implemented SLR (Source Routing with Local Recovery) as a prototype of our approach. Simulation studies show that SLR achieves efficient and effective local recovery while maintaining acceptable overhead.  相似文献   

5.
On-demand power management for ad hoc networks   总被引:1,自引:0,他引:1  
Rong  Robin 《Ad hoc Networks》2005,3(1):51-68
Battery power is an important resource in ad hoc networks. It has been observed that in ad hoc networks, energy consumption does not reflect the communication activities in the network. Many existing energy conservation protocols based on electing a routing backbone for global connectivity are oblivious to traffic characteristics. In this paper, we propose an extensible on-demand power management framework for ad hoc networks that adapts to traffic load. Nodes maintain soft-state timers that determine power management transitions. By monitoring routing control messages and data transmission, these timers are set and refreshed on-demand. Nodes that are not involved in data delivery may go to sleep as supported by the MAC protocol. This soft state is aggregated across multiple flows and its maintenance requires no additional out-of-band messages. We implement a prototype of our framework in the ns-2 simulator that uses the IEEE 802.11 MAC protocol. Simulation studies using our scheme with the Dynamic Source Routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on–off traffic loads, with comparable throughput and latency. Preliminary results also show that it outperforms existing routing backbone election approaches.  相似文献   

6.
Lee  S.-J. Gerla  M. Toh  C.-K. 《IEEE network》1999,13(4):48-54
Bandwidth and power constraints are the main concerns in current wireless networks because multihop ad hoc mobile wireless networks rely on each node in the network to act as a router and packet forwarder. This dependency places bandwidth, power, and computation demands on mobile hosts which must be taken into account when choosing the best routing protocol. In previous years, protocols that build routes based on demand have been proposed. The major goal of on-demand routing protocols is to minimize control traffic overhead. We perform a simulation and performance study on some routing protocols for ad hoc networks. The distributed Bellman-Ford (1957, 1962), a traditional table-driven routing algorithm, is simulated to evaluate its performance in multihop wireless network. In addition, two on-demand routing protocols (dynamic source routing and associativity-based routing) with distinctive route selection algorithms are simulated in a common environment to quantitatively measure and contrast their performance. The final selection of an appropriate protocol will depend on a variety of factors, which are discussed in this article  相似文献   

7.
This paper proposes a geographical awareness routing protocol based on a hybrid routing protocol, the Zone Routing Protocol (ZRP), in Mobile Ad Hoc Networks (MANETs). ZRP is created from combining proactive routing protocol and on-demand routing protocol; therefore, it inherits the advantages of both these routing protocols. The long delay time of the on-demand routing protocol and the huge routing overhead of the proactive routing approach are reduced in ZRP. However, ZRP still produces a large amount of redundant routing overhead in the route discovery process, which not only wastes energy but also increases the workload of the network, while limited bandwidth is a challenge for MANETs. To mitigate routing overhead, a geographical awareness approach that is applied to limit the discovered route area in ZRP is proposed and is called the Geographical awareness ZRP (GeoZRP). Simulation results confirm that the proposed algorithm alleviates routing overhead and end-to-end delay with only a slightly decrease in the packet delivery ratio.  相似文献   

8.
Robust multi-path routing for dynamic topology in wireless sensor networks   总被引:1,自引:0,他引:1  
Wireless sensor networks are being widely researched and are expected to be used in several scenarios. On the leading edge of treads, on-demand, high-reliability, and low-latency routing protocol is desirable for indoor environment applications. This article proposes a routing scheme called robust multi-path routing that establishes and uses multiple node-disjoint routes. Providing multiple routes helps to reduce the route recovery process and control the message overhead. The performance comparison of this protocol with dynamic source routing (DSR) by OPNET simulations shows that this protocol is able to achieve a remarkable improvement in the packet delivery ratio and average end-to-end delay.  相似文献   

9.
This article puts forward an Ad-hoc on-demand distance vector routing(AODV)routing overhead analysis method in mobile Ad-hoc network(MANET).Although multiple routing protocols have been proposed to improve the performance,scarcely any paper analyzed the routing overhead caused by routing setup and maintenance processes in mathematical way.Routing overhead consumes part of network resources and limits the supported traffic in the network.For on-demand routing protocols like AODV,the routing overhead depends on the link failure probability to a great extent.This article analyzes the collision probability caused by hidden-node problem and the impact on link failure probability.In chain and rectangle scenarios,it presents a mathematical analysis of the theoretical routing overhead of AODV protocol based on link failure probability.Simulations on OPNET 14.5platform match well with the theoretical derivation which confirms the effectiveness of the analysis method.  相似文献   

10.
DOA: DSR over AODV Routing for Mobile Ad Hoc Networks   总被引:2,自引:0,他引:2  
We present a lightweight hierarchical routing model, Way Point Routing (WPR), in which a number of intermediate nodes on a route are selected as waypoints and the route is divided into segments by the waypoints. Waypoints, including the source and the destination, run a high-level intersegment routing protocol, while the nodes on each segment run a low-level intrasegment routing protocol. One distinct advantage of our model is that when a node on the route moves out or fails, instead of discarding the whole original route and discovering a new route from the source to the destination, only the two waypoint nodes of the broken segment have to find a new segment. In addition, our model is lightweight because it maintains a hierarchy only for nodes on active routes. On the other hand, existing hierarchical routing protocols such as CGSR and ZRP maintain hierarchies for the entire network. We present an instantiation of WPR, where we use DSR as the intersegment routing protocol and AODV as the intrasegment routing protocol. This instantiation is termed DSR over AODV (DOA) routing protocol. Thus, DSR and AODV—two well-known on-demand routing protocols for MANETs—are combined into one hierarchical routing protocol and become two special cases of our protocol. Furthermore, we present two novel techniques for DOA: one is an efficient loop detection method and the other is a multitarget route discovery. Simulation results show that DOA scales well for large networks with more than 1,000 nodes, incurring about 60 percent-80 percent less overhead than AODV, while other metrics are better than or comparable to AODV and DSR.  相似文献   

11.
Mobile ad hoc networks are characterized by multi-hop wireless links, absence of any cellular infrastructure, and frequent host mobility. Design of efficient routing protocols in such networks is a challenging issue. A class of routing protocols called on-demand protocols has recently found attention because of their low routing overhead. We propose a technique that can reduce the routing overhead even further. The on-demand protocols depend on query floods to discover routes whenever a new route is needed. Our technique utilizes prior routing histories to localize the query flood to a limited region of the network. Simulation results demonstrate excellent reduction of routing overheads with this mechanism. This also contributes to a reduced level of network congestion and better end-to-end delay performance of data packets.  相似文献   

12.
A number of different routing protocols proposed for use in multihop wireless ad hoc networks are based in whole or in part on what can be described as on-demand behavior. By on-demand behavior, we mean approaches based only on reaction to the offered traffic being handled by the routing protocol. In this paper, we analyze the use of on-demand behavior in such protocols, focusing on its effect on the routing protocol's forwarding latency, overhead cost, and route caching correctness, drawing examples from detailed simulation of the dynamic source routing (DSR) protocol. We study the protocol's behavior and the changes introduced by variations on some of the mechanisms that make up the protocol, examining which mechanisms have the greatest impact and exploring the tradeoffs that exist between them  相似文献   

13.
While on-demand routing protocols have been optimized to use the aid of proxy nodes by considering the possibility of long-lived partitions due to intermittent connectivity, they do not consider the chances of using a proxy for a long distance between a pair of source and destination. In this paper, we introduce a Proxy-Assisted Routing (PART) for efficient data transmission by selecting a proxy node for every path length that is longer than the predefined value between a source and destination. Whenever route errors occur between a source node and proxy node, or a proxy node and destination node, the proxy node repairs a broken route locally by redirecting a new route to the source or destination node. To reduce routing overhead, we delineate a broadcasting zone, where nodes are only allowed to broadcast request packets within the predefined zone to the proxy. Furthermore, unicast transmission is used for the proxy selection process using IP address information at the MAC layer. When we evaluate the performance metrics through simulations, PART significantly reduces the normalized routing load by almost 55% and the packet losses by almost 30%, and increases throughput almost 70% if compared to the traditional routing protocols.  相似文献   

14.
Mobile ad hoc networks are characterized by multi-hop wireless links, absence of any cellular infrastructure, and frequent host mobility. Design of efficient routing protocols in such networks is a challenging issue. A class of routing protocols called on-demand protocols has recently found attention because of their low routing overhead. The on-demand protocols depend on query floods to discover routes whenever a new route is needed. Such floods take up a substantial portion of network bandwidth. We focus on a particular on-demand protocol, called Dynamic Source Routing, and show how intelligent use of multipath techniques can reduce the frequency of query floods. We develop an analytic modeling framework to determine the relative frequency of query floods for various techniques. Our modeling effort shows that while multipath routing is significantly better than single path routing, the performance advantage is small beyond a few paths and for long path lengths. It also shows that providing all intermediate nodes in the primary (shortest) route with alternative paths has a significantly better performance than providing only the source with alternate paths. We perform some simulation experiments which validate these findings.  相似文献   

15.
High capacity real-time data communications in sensor networks usually require multihop routing and ad hoc routing protocols. Unfortunately, ad hoc routing protocols usually do not scale well and cannot handle dense situations efficiently. These two issues-scalability and density-are the major limitations when we apply ad hoc routing schemes to sensor networks. Passive clustering (PC) classifies ad hoc/sensor nodes into critical and noncritical nodes without any extra transmission. By 2-b piggybacking and monitoring user traffic (e.g., data polling requests from a sink), PC deploys the clustering structure "for free". Moreover, PC makes even the first flooding as efficient as all subsequent floodings (i.e., no initialization overhead). PC introduces many benefits, including efficient flooding and density adaptation. As a result, PC reduces control overhead of ad hoc routing protocols significantly and, as a consequence, enables ad hoc routing in large, dense sensor networks. The resulting structure can be utilized in cluster-based ad hoc network/sensor networking as well as for active node selection.  相似文献   

16.
A routing protocol for cognitive radio ad hoc networks (CRAHNs), namely, primary user supported routing (PSR) is demonstrated in this research. Unlike existing routing protocols for CRAHN, where routing of cognitive users (CUs) is accomplished within CUs, in this proposed protocol, some of the primary users (PUs) support CUs to communicate, by forwarding CU packets. This service provided by PU is of voluntary nature. However, such assistance shall be provided by the PUs, only when they are idle, thereby, preserving the principles of cognitive radio networks (CRNs), which indicates that the operation of PU should not be disturbed by the CU activities. The proposed work is compared with cognitive ad hoc on-demand distance vector (CAODV) protocol. The performance parameters considered are routing overhead, rate of loss of packets, and e2e packet delay. PSR outperforms CAODV in all these performance parameters. There has been on average 26.25% improvement in routing overhead, 34.12% decrease in loss, and 27.01% improvement in e2e delivery in the proposed PSR.  相似文献   

17.
We propose and analyze a class of integrated social and quality of service (QoS) trust-based routing protocols in mobile ad-hoc delay tolerant networks. The underlying idea is to incorporate trust evaluation in the routing protocol, considering not only QoS trust properties but also social trust properties to evaluate other nodes encountered. We prove that our protocol is resilient against bad-mouthing, good-mouthing and whitewashing attacks performed by malicious nodes. By utilizing a stochastic Petri net model describing a delay tolerant network consisting of heterogeneous mobile nodes with vastly different social and networking behaviors, we analyze the performance characteristics of trust-based routing protocols in terms of message delivery ratio, message delay, and message overhead against connectivity-based, epidemic and PROPHET routing protocols. The results indicate that our trust-based routing protocols outperform PROPHET and can approach the ideal performance obtainable by epidemic routing in delivery ratio and message delay, without incurring high message overhead. Further, integrated social and QoS trust-based protocols can effectively trade off message delay for a significant gain in message delivery ratio and message overhead over traditional connectivity-based routing protocols.  相似文献   

18.
Numerous routing protocols have recently been developed for ad hoc mobile networks. Routing protocols to date can be categorized as either ‘table-driven’ or ‘on-demand’. Many of the proposed routing protocols take the on-demand approach because this does not require keeping lots of routing information. However, these kinds of protocols are not able to react fast enough to maintain routing. In this paper, we propose a new protocol to improve existing on-demand routing protocols by constructing multiple backup routes; when the network topology changed, the proposed protocol could transmit data packets dynamically through backup routes. We then developed an analytic model to estimate the reconnection probability of the proposed algorithm. We also examined the performance by simulating the protocol using ns2. The experimental results showed that the protocol had fewer control packages, lower routing packet overhead, and a higher receiving ratio than others.  相似文献   

19.
A growing need to have ubiquitous connectivity has motivated our research to provide continuous connection between various wireless platforms such as cellular networks, wireless local area networks (WLANs), and mobile ad hoc networks (MANETs). In this paper, we consider integration at the routing layer and propose two adaptable routing protocols (IRP‐RD and IRP‐PD) that exploit topology information stored at the fixed network components (cellular base stations and WLAN access points) for the route discovery and maintenance processes. Our proposed protocols can provide connectivity to the cellular network and/or WLAN hotspots through multihop routing, while differ in the gateway discovery approach used. In IRP‐RD, multihop routes to gateways to the cellular network or WLAN hot spots are discovered on demand, while in IRP‐PD out of coverage users proactively maintain routes to the gateways. Furthermore, proposed protocols can be used in any heterogeneous scenario, combining a cellular network and WLANs operating in infrastructure or ad hoc (MANET) mode. We provide simulation results that demonstrate the effectiveness of the proposed integrated routing protocols and show the advantages and drawbacks of each gateway discovery approach in different heterogeneous scenarios. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Multi-hop vehicle-to-vehicle communication is useful for supporting many vehicular applications that provide drivers with safety and convenience. Developing multi-hop communication in vehicular ad hoc networks (VANET) is a challenging problem due to the rapidly changing topology and frequent network disconnections, which cause failure or inefficiency in traditional ad hoc routing protocols. We propose an adaptive connectivity aware routing (ACAR) protocol that addresses these problems by adaptively selecting an optimal route with the best network transmission quality based on statistical and real-time density data that are gathered through an on-the-fly density collection process. The protocol consists of two parts: 1) select an optimal route, consisting of road segments, with the best estimated transmission quality, and 2) in each road segment of the chosen route, select the most efficient multi-hop path that will improve the delivery ratio and throughput. The optimal route is selected using our transmission quality model that takes into account vehicle densities and traffic light periods to estimate the probability of network connectivity and data delivery ratio for transmitting packets. Our simulation results show that the proposed ACAR protocol outperforms existing VANET routing protocols in terms of data delivery ratio, throughput and data packet delay. Since the proposed model is not constrained by network densities, the ACAR protocol is suitable for both daytime and nighttime city VANET scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号