首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
杨东周 《光电子.激光》2009,(11):1438-1441
提出了一种基于两端固定压杆的光纤光栅(FBG)啁啾度调谐的新方法,在FBG中引入线性应变,实现中心波长无移动啁啾度调谐。结合材料力学分析了FBG啁啾度调谐的原理,仿真分析了啁啾度调谐过程中的光栅反射谱和时延特性。带宽展宽调谐的实验实现了啁啾光纤光栅(CFBG)的带宽从6.52nm增加到12.78nm;而带宽压缩调谐实现了CFBG的带宽从6.57nm压缩到0.95nm。该啁啾度调谐方法在CFBG动态色散补偿以及利用CFBG的带宽信息实现温度无补偿的压力、位移等物理量的传感有着重要应用。  相似文献   

2.
基于非线性色散补偿光栅的可调谐光电振荡器   总被引:5,自引:5,他引:0  
为实现光电振荡器(OEO)输出频率的连续可调,提出一种新型的基于非线性色散补偿光栅(FBG)实现可调谐OEO方案。本文方案不需要电滤波器,且振荡频率随着光源的波长变化而变化。其中,三阶色散补偿FBG可以采用FBG重构算法设计。当光源波长从1 550.6nm变化到1 551.4nm时,相应的色散为340~1 460ps/nm,输出频率的调谐范围为6.5~13.5GHz,实现了振荡频率的大范围可调谐。  相似文献   

3.
提出一种基于啁啾光纤光栅(CFBG)的可调谐级联结构的微波光子滤波器。通过原理分析表明,这种滤波器在一定的宽频带范围内能通过调整光载波波长来实现调谐通带。仿真分析了滤波器的频率响应受光谱宽度的影响。结果表明这种可调谐滤波器级联结构是可行的。  相似文献   

4.
研究了基于匹配包层 (MC)、色散位移 (DS)和色散补偿 (DC)单模光纤的声光滤波器的带宽特性。研究结果表明利用具有比较强的波导色散的光纤可以实现窄带声光滤波器。为了描述光纤的色散特性与滤波器带宽的关系 ,定义了一个新的表征光纤色散特性的参数 N并提出了通过测量光纤声光滤波器峰值波长调谐度来测量色散参数N的新方法。采用商用DC光纤在实验上实现了带宽为 0 5 5nm的半高全宽 (FWHM)全光纤声光滤波器。  相似文献   

5.
利用80 m长的高非线性(HNL)微结构光纤(MF),进行了基于自相位调制(SPM)效应和偏移滤波的全光2R再生实验.采用的MF的非线性系数约为11 W-1·km-1,具有小的正常色散和平坦的色散特性,在1 550 nm波长处色散值约为-0.58 nm-1·km-1,而在1 550~1 650 nm波长范围内的色散值变化小于1.5 ps·nm-1·km-1.通过调节入射MF的功率和可调谐滤波器的参量,可以实现全光2R再生.  相似文献   

6.
在单模光纤(SMF)上拉出级联对称缓锥,形成马赫 -曾德尔干涉仪(MZI)结构,将其置入光纤环镜中, 理论和实验研究了它对滤波器特性的改善。环镜滤波器的透射谱由MZI和Sagnac干涉 结合的非相干叠加而成,调谐MZI能实现可调谐滤波。实验表明,滤波器在自由 谱60nm(1425~1485nm)范围内可提高梳状滤波 器的滤波器特性,实现了可调谐滤波。本文结构输出波形稳定, 调制深度大于20dB,优化了光纤环镜滤波特性。  相似文献   

7.
设计了一种新颖的60km色散补偿8信道50GHz信道间隔的啁啾光纤Bragg光栅(CFBG)梳状滤波器。采用基于LP算法的IS光纤光栅设计技术,设计出CFBG的折射率调制函数和啁啾分布。根据设计得出的耦合系数分布,采用传输矩阵法分析所设计CFBG的反射谱、时延曲线和群时延抖动。结果表明,所设计的CFBG不仅满足了设计指标要求,性能优良,而且在已知的制作技术条件下可以实现。  相似文献   

8.
基于光纤环形镜滤波的L波段可调谐光纤激光器   总被引:1,自引:0,他引:1  
设计并制作了基于保偏光纤的可调谐光纤环形镜滤波器,利用环形腔结构在L波段获得了40 nm的可调谐激光输出(1 570~1 610 nm).采用光纤光栅反射ASE(放大的自发辐射)的方法有效地降低了光纤激光器的阈值功率.  相似文献   

9.
丁香栋  何巍  闫光  骆飞  祝连庆 《激光与红外》2016,46(9):1068-1172
() ()基金项目: 。摘要:为了实现高稳定性的可调谐激光输出,提出并设计了一种基于Mach-Zehnder(M-Z)滤波结构,结合Fabry-Perot(F-P)滤波器的可调谐掺铒光纤激光器,并对激光器的原理及实现方案进行理论分析和实验验证。所设计激光器系统的泵浦源工作波长为976 nm;长度5 m的掺铒光纤作为增益介质;采用全光纤M-Z结构进行滤波,并结合F-P滤波器实现单波长激光可调谐输出。实验中,通过调节F-P滤波器,在泵浦功率为60 mW时,实现了1547~1568 nm范围内单波长激光的稳定可调谐输出,波长调谐间隔小于1.7 nm,每个输出波长的边模抑制比均大于55 dB,线宽均小于0.1 nm。  相似文献   

10.
利用增益开关(GS)DFB半导体激光器(LD)作初始抽运源,在4.2km左右的普通色散位移光纤(DSF)中获得了10GHz、120nm以上的超连续(SC)谱脉冲。实验研究了抽运光脉冲峰值功率和光纤零色散波长对SC谱宽度的影响,同时还利用0.4nm带宽的可调谐滤波器对从SC谱中滤出脉冲的特性进行了研究。  相似文献   

11.
An efficient scheme to change the chirp rate of a fiber Bragg grating (FBG) has been developed based on a specially-designed cantilever beam with the beam-bending method. It allows, to date, the largest tuning range of 36 nm in reflection bandwidth of a chirped-FBG (CFBG) while keeping the center wavelength nearly fixed during the tuning process. Using this method, bandwidth-tunable fiber grating filters with tunable chromatic dispersion or differential group delay have been demonstrated. Channel spacing-tunable multi-wavelength filters based on both sampled- and superimposed-CFBGs have also been realized. Moreover, tuning of the bandwidth and channel spacing is continuous with this scheme that makes the achieved devices more flexible.  相似文献   

12.
In this paper, an optically controlled tunable delay scheme has been proposed using four-wave mixing (FWM) wavelength conversion in a 35-cm highly nonlinear bismuth-oxide fiber (Bi-NLF) together with group velocity dispersion (GVD) in a chirped fiber Bragg grating (CFBG). The Bi-NLF offers a very large nonlinearity and gives rise to significant FWM over a short fiber segment. With the use of a CFBG, a delay range over 185 ps has been experimentally demonstrated. To investigate the performance of the tunable delay, we have applied the scheme for variable delays of 10-Gb/s amplitude-shift keying (ASK) and differential phase-shift keying (DPSK) data signals. The bit error rate (BER) measurements show a power penalty of less than 3.5 dB for both amplitude- and phase-modulated data formats. To further increase the delay time, the CFBG has been replaced by a dispersion compensated fiber (DCF) that provides a wider bandwidth of operation. A variable delay up to 840 ps has been obtained using dual-pump FWM that offers a conversion bandwidth of about 40 nm. The large conversion range helps to minimize GVD-induced pulse distortion as a shorter DCF can be used for a given delay. The Bi-NLF provides an enhanced stimulated Brillouin scattering (SBS) threshold, a reduced latency, and an increased compactness of the approach for practical applications.  相似文献   

13.
We present a new variable dispersion device based on tuning the chirp of a tapered fiber Bragg grating by means of a magnetic transducer. By using a nonuniform magnetic field, we demonstrate a 188-472-ps/nm dispersion tuning range, suitable for tunable radio-frequency filters and dispersion compensation, among others.  相似文献   

14.
飞秒激光在工业加工、精密测量、军事国防、科学研究等领域具有广阔的应用前景。报道了基于光谱控制与色散优化的高功率、高脉冲质量飞秒啁啾脉冲放大系统。利用与压缩器色散量相匹配的色散可调啁啾布拉格光纤光栅(CFBG)作为展宽器,通过微调CFBG色散量补偿系统的残余色散使整个系统的净色散趋于零;同时引入光谱滤波等手段,保证入射到主放大器之前的脉冲光谱形状不发生畸变,避免了放大过程中脉冲质量的劣化。最终获得了重复频率为50 MHz、平均功率为24 W、脉冲宽度为198 fs的高脉冲质量飞秒激光输出。  相似文献   

15.
By optimizing the fabrication process of the chirped optical fiber Bragg grating (CFBG), some key problems of CFBG are solved, such as fabrication repetition, temperature stability, group delay ripple (GDR), fluctuation of the reflection spectrum, polarization mode dispersion (PMD), interaction of cascaded CFBG, and so on. The CFBG we fabricated can attain a temperature coefficient less than 0.0005 nm/℃, and the smoothed GDR and the fluctuation of the reflection spectrum are smaller than 10ps and 0.5dB, respec-tively. The PMD of each CFBG is less than 1 ps and the dispersion of each grating is larger than -2600 ps/(nm·km). With dispersion compensated by the CFBGs we fabricated, a 13×10 Gbit/s 3100 km ultra long G.652 fiber transmission system is successfully imple-mented without electric regenerator. The bit error rate (BER) of the system is below 10-4 without forward error correction (FEC); when FEC is added, the BER is below 10-12. The power penalty of the carrier-suppressed return-to-zero (CSRZ) code transmission system is only 2.5 dB.  相似文献   

16.
An S band and a C band distributed fiber Raman amplifiers (DFRAs) with flattened gain and compensated dispersion have been studied and implemented with 1427 nm and 1455 nm mono-wavelength fiber Raman lasers as the pumped sourcesrespectively. The gain of single-wave pumped S band and C band can reach 10 dB and 15 dB respectively. And a 50 nmgain flattened width was successfully obtained by using a chirp fiber Bragg grating (CFBG) gain flattened filter with gainripple of ±0.6 dB. The C band DFRA has been applied to CDMA wireless communication system successfully.  相似文献   

17.
The characteristics of chirped fiber Bragg gratings (CFBGs) are optimized so that the ripple coefficient of the power reflectivity spectrum and group time delay are less than 1 dB and |± 15| ps, group delay is about 2600 ps/nm, polarization module dispersion is very small, PMD<2 ps, -3 dB bandwidth is about 0.35 nm, and insertion loss is about 4-5 dBm. Using dispersion compensation CFBG, a 2500 km-10 Gbps RZ optical signal transmission system on G.652 fiber was successfully demonstrated without an electric regenerator by optimizing dispersion management and loss management. The RZ optical signal was generated through a two-stage modulation method. At 2081 km, the power penalty of transmission is about 3 dB (conditions: RZ signal, BER = 10-12, PRBS = 1023 - 1); At 2560 km, the power penalty is about 5 dB. It is superior to the system using NRZ under the same conditions.  相似文献   

18.
We report a novel dispersion tunable device for first-order dispersion compensation. It is based on a fiber Bragg grating written in a tapered fiber with a specific profile. The taper profile allows tuning the dispersion of the grating by stretching the fiber while the linearity of the group delay is preserved. A device with 0.8 nm of useful bandwidth and dispersion value tunable over more than 400 ps/nm is reported.  相似文献   

19.
声光可调滤波器以其宽的调节范围、窄的滤波线宽、多信道并行滤光等特点,在光纤通信系统中作动态增益均衡器具有很多优点。用声光可调滤波器实现EDFA级联的WDM系统的动态增益均衡,可扩展增益带宽(~52 nm),提高传输距离 (~ 2400 km)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号