首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scheme to enlarge the spurious free dynamic range (SFDR) of the microwave photonic link is proposed based on a dual-parallel Mach–Zehnder modulator (DPMZM). By properly adjusting the phase of the RF signals and the bias voltages of the DPMZM, the second-order spurious components in the optical carrier band (OCB) of the two sub-MZMs can be canceled out completely, and the third-order and fifth-order spurious components in the first-order upper sideband (1-USB) produced by one sub-MZM have equal amplitude but \(180{^{\circ }}\) phase difference with the other sub-MZM. Therefore, as the two optical beams are combined at the output of the DPMZM and the OCB and the 1-USB are abstracted by a bandpass filter to generate the transmitted signal, all the major optical spurious components that contribute to the third-order intermodulation distortion (IMD3) are canceled out. Theoretical analysis and simulation results show that the proposed scheme, without digital linearization and other optical processor, can suppress IMD3 approximately 30 dB and improve the SFDR by \(18~\hbox {dB}\,\hbox {Hz}^{2/3}\) compared with the conventional quadrature biased MZM system.  相似文献   

2.
为了解决微波光子混频系统的非线性失真和动态范围受限问题,提出了一种基于并联双平行马赫-曾德尔调制器(DPMZM)的大动态范围微波光子混频系统。利用DPMZM实现射频和本振信号的并行调制,通过配置并行两路的电光调制指数及调制器的工作点,抵消输出中频信号中的三阶交调失真(IMD3),最终提高系统的动态范围。仿真结果表明,所提方案可将IMD3抑制17.7 dB,系统无杂散动态范围提高到127.8 dB·Hz 4/5。  相似文献   

3.
Analog performance of an all-optical ultrafast wavelength converter is measured and reported for the first time. The wavelength-conversion process is based on nonlinear cross-phase modulation in an optical fiber combined with an optical filter to convert phase modulation to amplitude modulation. The spurious-free dynamic range (SFDR) of the converter is measured to be 82 dB/spl middot/Hz/sup 2/3/. We define a new metric called the SFDR power penalty, which measures the degradation in SFDR relative to baseline the back-to-back analog optical link. The SFDR power penalty was measured to be 5 dB/spl middot/Hz/sup 2/3/ and is shown to be a function of the input optical power. This metric is used to characterize the linear region of the optical wavelength converter.  相似文献   

4.
A composite optical transmitter based on dual parallel Mach-Zehnder modulators is proposed to linearize double-sideband suppressed-carrier coherent analog fiber-optic links. The optimization condition for achieving the best spurious-free dynamic range (SFDR) is discussed, with a simple and exact expression for the maximized SFDR being derived. Unlike other existing linearization schemes, the proposed technique has the advantages of broadband operation and shot-noise-limited signal-to-noise ratio at the same time. For a lossless link employing a transmitter laser with moderate optical power of 100 mW, a broadband SFDR as high as 144 dB middot Hz4/5 is theoretically predicted.  相似文献   

5.
在流水线模数转换器(Pipeline ADC)电路中,栅压自举开关中的非线性电容会对开关管的导通电阻产生直接的影响,导致采样非线性。设计了一种三路径的高线性度栅压自举开关,采用三个自举电容,分别构成两条主路径和一条辅助路径,使得输入信号在通过两条主路径传输到开关管栅端时加快栅端电压的建立,同时利用辅助路径驱动非线性电容,减少电路中非线性电容对采样电路线性度的影响,从而增强信号驱动能力,提高整体电路的精度。本文设计的栅压自举开关应用于14 bit 500 MHz流水线ADC的采样保持电路中。采用TSMC 28 nm CMOS工艺进行电路设计。仿真结果表明,在输入频率为249 MHz,采样频率为500 MHz的条件下,该栅压自举开关的信噪比(SNDR)达到92.85 dB,无杂散动态范围(SFDR)达到110.98 dB。  相似文献   

6.
Linearisation of a radio basestation amplifier using a third order, a fifth order and a seventh order predistortion scheme is studied. Adaptive predistortion using a third order predistorter improved the amplifier intermodulation distortion (IMD) by between 6.4 dB and 33 dB from the third IMD power level (i.e., maximum power amplitude variation of the IMD), provided by the raw amplifier, as measured by a two tone test. The variation in improvement is due to changes in the input power level. Improvement increases as the input power is backed off from the 1 dB compression point. A fifth order predistorter will give an IMD improvement of 8.7 dB and 48.4 dB if properly adjusted. A seventh order predistorter (with the fifth complex coefficient fixed to zero) will show the best performance, particularly throughout a window (approximately from 1.5 dB to 3 dB away from the 1 dB compression point). The IMD improvement throughout this window within the high input range measures between 9.1 dB to 21.7 dB over that achieved with a fifth order predistorter. For a nine-tone test (with uniformly distributed random phase), a third order predistorter will hardly improve the worst IMD power level, provided by the raw amplifier. A fifth order predistorter, if properly adapted will give an IMD improvement of between 8.8 dB and 41.5 dB from the worst IMD level while a seventh order predistorter will give a close performance to that of a fifth order one. Fixing the predistorter coefficients enables a comparative study of the IMD power level improvement between 5th order fixed and adaptive predistorters, for a nine-tone excitation. A 5th order predistorter with its coefficients fixed to those values obtained for optimum IMD level at a backed-off power input value of 8.5 dB from the 1 dB compression point is found to maintain an IMD power variation better than 55 dB from fundamental power level, throughout the input range, up to the backed-off value.  相似文献   

7.
The spurious-free dynamic range (SFDR) of an InGaAsP-InP Franz-Keldysh effect (FKE) waveguide modulator is studied. Low-biasing the FKE modulator is shown to enhance the SFDR by 22 dB with a 3-dB optical power penalty. Polarization-independent RF operation is also obtained with low bias. At 2 mA photocurrent, the simulated narrowband and broadband SFDR are, respectively, 127 dB and 104 dB in a 1-Hz bandwidth. The measured result projects a narrowband SFDR of 129 dB-Hz 4/5 at this photocurrent  相似文献   

8.
A predistortion technique has been proposed to reduce intermodulation distortion (IMD) generated from the conversion process of a mixer. In this technique, the IMD generated from a mixer in the IF band was cancelled by the controlled RF error signal, which is generated by a predistorter. The magnitude and phase of the RF error signal were properly adjusted through a vector modulator. This linearization technique has been verified by experiment of a down conversion mixer in the cellular band. A two tone test has been performed at the frequency of 836 MHz with 442 kHz separation. The results show that this method improves about 16 dB of IMD3 at -18 dBm IF output power in 10 MHz frequency band and increases about 3.5 dB of P1 dB of the mixer. Simple topology and good performance in linearization of IF signals renders this technique suitable for highly linear frequency conversion in communication systems  相似文献   

9.
In this paper, high-speed traveling-wave electroabsorption modulators (TW-EAMs) with strain-compensated InGaAsP multiple quantum wells as the absorption region for analog optical links have been developed. A record-high slope efficiency of 4/V, which is equivalent to a Mach-Zehnder modulator with a V/sub /spl pi// of 0.37 V and a high extinction ratio of > 30 dB/V have been measured. A detailed study of the nonlinearity and the spurious-free dynamic range (SFDR) is presented. By optimizing the bias voltage and the input optical power, the SFDR can be improved by 10-30 dB. After minimizing the third-order distortion, an SFDR as high as 128 dB-Hz/sup 4/5/ is achieved at 10 GHz. A simple link measurement was made using this EAM and an erbium-doped fiber amplifier and a 50-/spl Omega/ terminated photodetector. At 10 GHz, a link gain of 1 dB is achieved at a detected photocurrent of 7.6 mA with higher gains at lower frequencies. The dependence of link gains on bias voltage, input optical, and radio frequency powers are investigated in detail.  相似文献   

10.
The use of coherent detection in analog optical links offers several advantages over direct detection: improved receiver sensitivity, inherent frequency translation, and the ability to utilize angle modulation and separate wavelength division multiplexed (WDM) signals. In this paper, we investigate an externally modulated coherent AM optical link. We study the dynamic range of the coherent AM link, considering receiver noise, laser phase noise, laser relative intensity noise (RIN), and system nonlinearities. With proper selection of the receiver's IF bandwidth, the coherent AM link can be made insensitive to the laser linewidth. For optical powers less than 5 mW, RIN of less than -160 dB/Hz reduces the spurious-free dynamic range (SFDR) by less than 3 db with the use of a balanced receiver. The external modulator nonlinearity is the dominant nonideal effect; it reduces the SFDR by 5-19 dB from the theoretical limit for 100% modulation index. We compare the performance of the coherent AM link with that of a conventional direct detection link for two applications: point-to-point links and distribution networks. When the received optical power is less than 1 mW, the coherent link can provide higher SFDR than the direct detection link. Thus, coherent links are well-suited for long distance point-to-point links and FM video distribution systems  相似文献   

11.
A novel CMOS voltage-to-current converter topology is proposed. The use of nested local feedback loops and the absence of current replication in the signal path provide low sensitivity to transistor mismatch and high linearity. Measurements for a 0.5 mum CMOS prototype show a spurious-free dynamic range (SFDR) of 75 dB for a differential input of 6 Vpp and a dual supply of plusmn1.5 V. The circuit occupies 0.1 mm2 and consumes 3 mW  相似文献   

12.
Peripheral coupled waveguide (PCW) design has been deployed in InGaAsP multiple quantum-well (MQW) electroabsorption modulator (EAM) at 1.55-/spl mu/m wavelength. PCW enhances the optical saturation power and reduces the optical insertion loss and the equivalent V/sub /spl pi// simultaneously. A radio-frequency link using a 1.3-mm-long lumped-element PCW EAM has achieved experimentally a link gain of -3 dB, at 500 MHz and at input optical power of 80 mW. The corresponding two-tone multioctave spurious-free dynamic range (SFDR) at the same bias is measured at 118 dB/spl middot/Hz/sup 2/3/. The single-octave SFDR at the third-order null bias is 132 dB/spl middot/Hz/sup 4/5/.  相似文献   

13.
A high linearity, undersampling 14-bit 357 kSps cyclic analog-to-digital convert (ADC) is designed for a radio frequency identification transceiver system. The passive capacitor error-average (PCEA) technique is adopted for high accuracy. An improved PCEA sampling network, capable of eliminating the crosstalk path of two pipelined stages, is employed. Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area. An additional digital calibration block is added to compensate for the error due to defective layout design. The presented ADC is fabricated in a 180 nm CMOS process, occupying 0.65 × 1.6 mm~2.The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range (SFDR),and the peak SFDR is as high as 106.4 dB with 2.431 MHz input.  相似文献   

14.
本文为射频标签(RFID)收发机系统设计了一个高线性,14位357 k采样率的欠采样循环模数转换器。为提高模数转换器的精度,设计中采用了有源电容误差平均(PCEA)技术。并且提出了一种改进的PCEA采样网络,可以消除两个流水级之间的串扰影响。为降低模数转换器的功耗和减小面积,设计采用了运放共享技术,并且去除了采样保持放大级。为补偿不完善的版图设计引入的误差,增加了一个附加的数字校准模块。该模数转换器由180 nm CMOS工艺流水完成,面积为0.65 mm  1.6 mm。在确保SFDR不低于90 dB的条件下,该欠采样模数转换器的输入信号频率高达15.5 MHz;在2.431 MHz输入下,峰值SFDR高达106.4 dB.  相似文献   

15.
This paper describes the system design and performance of an optical path cross-connect (OPXC) system based on wavelength path concept. The (OPXC) is designed to offer 16 sets of input and output fiber ports with each fiber transporting eight multiwavelength signals for optical paths. Each optical path has a capacity of 2.5 Gb/s. Consequently, the total system throughput is 8×16×2.5=320 Gb/s and the OPXC features high modularity and expandability for switch components. By exploiting planar lightwave circuit (PLC) technologies, four sets of (8×16) delivery-and-coupling-type optical switches (DC-switches) are developed for the 320 Gb/s throughput OPXC system. The DC-switch offers the average insertion-loss of 12.6 dB and ON/OFF ratio of 42.1 dB. The PLC arrayed-waveguide gratings are confirmed to successfully demultiplex the eight directly modulated signals, multiplexed at a spacing of 1 nm, with a crosstalk of under -25 dB. Eight wavelength-division multiplexing signals, directly modulated at 2.5 Gb/s, are confirmed to be transported over 330 km via a cross-connection node in the test-bed system that simulates five-node network. The experimental performances demonstrated In this paper ensures full scale implementation of the proposed optical path cross-connect system with 320 Gb/s throughput and high integrity  相似文献   

16.
SigmaDelta frequency discriminators (SigmaDeltaFDs) convert instantaneous frequency deviations of a carrier signal to digital. They are used for decoding narrowband phase or frequency modulated signals in communication receivers, self calibration of RF frequency synthesizers and in digital phase locked loops. In this paper, the impact of reference (sampling) clock phase noise on a SigmaDeltaFD's spurious-free dynamic range (SFDR) is derived. It is shown that for SigmaDeltaFDs with jittered sampling clock, in addition to FM sidebands, a high baseband tonal content is generated degrading overall SFDR. The reference clock phase noise impact is derived mathematically, and two commonly used SigmaDeltaFDs circuits are designed and implemented to verify the results experimentally. Experimental results are shown to match the theoretical prediction of SFDR within 3 dB.  相似文献   

17.
燕振华  李斌  吴朝晖 《微电子学》2016,46(5):595-598
提出了基于冗余子级的流水线ADC后端校准技术,采用精度较高的流水线冗余子级代替参考ADC,对流水线ADC的各个子级校准,替代了对整个ADC的校准,使校准系统无需降频同步,较好地解决了传统校准系统中主信号通路与参考ADC信号通路不同步的问题。对Matlab/Simulink中搭建的精度为16位、采样频率为10 MS/s的流水线ADC进行仿真,结果表明,当输入信号频率为4.760 5 MHz时,经过校准,流水线ADC的有效位和无杂散动态范围分别由9.37位和59.96 dB提高到15.32位和99.55 dB。进一步的FPGA硬件验证结果表明,流水线ADC的有效位和无杂散动态范围分别为12.73位和98.62 dB,初步验证了该校准算法的可行性。  相似文献   

18.
A 64-MHz clock rate sigma-delta (/spl Sigma//spl Delta/) analog-to-digital converter (ADC) with -105-dB intermodulation distortion (IMD) at a 1.5-MHz signal frequency is reported. A linear replica bridge sampling network enables the ADC to achieve high linearity for high signal frequencies. Operating at an oversampling ratio of 29, a 2-1-1 cascade with a 2-b quantizer in the last stage reduces the quantization noise level well below that of the thermal noise. The measured signal-to-noise and distortion ratio (SNDR) in 1.1-MHz bandwidth is 88 dB, and the spurious-free-dynamic-range (SFDR) is 106 dB. The modulator and reference buffers occupy a 2.6-mm/sup 2/ die area and have been implemented with thick oxide devices, with minimum channel length of 0.35 /spl mu/m, in a dual-gate 0.18-/spl mu/m 1.8-V single-poly five-metal (SP5M) digital CMOS process. The power consumed by the ADC is 230 mW, including the decimation filters.  相似文献   

19.
The influence of imbalance on second-order intermodulation distortion (IMD2) in optical push-pull frontends for subcarrier multiplex CATV applications is investigated theoretically and experimentally. The investigation focuses on imbalance introduced in either the photodiode, the push-pull amplifier, or the output balun, and expressions describing the overall IMD2 cancellation efficiency are derived. The developed theory is used to predict the IMD2 cancellation behavior of an optical push-pull frontend. Commercially available PIN photodiodes for CATV purposes and ferrite core transformers are characterised for phase and amplitude balance up to 1 GHz. The overall IMD2 cancellation efficiency of an optical push-pull frontend based on the best of these devices is calculated. The theory is finally verified experimentally with an optical push-pull frontend designed with the characterised photodiode and transformer. The improvement in IMD2 suppression obtained with the push-pull structure relative to a single-ended structure is in average 29 dB across the band from 47-862 MHz. The total IMD2 suppression obtained for the frontend is between 60 dBc and 79 dBc at an average optical input power of 1 mW and with an optical modulation index (OMI) of 35 percent per carrier in a two-tone setup,  相似文献   

20.
A Novel Linearization Method of CMOS Drive Amplifier Using IMD Canceller   总被引:2,自引:0,他引:2  
A novel linearization method for CMOS drive amplifier using intermodulation distortion (IMD) canceller is presented. The IMD cancellation method is composed of a cascode main amplifier and a common-source IMD canceller. The additional common-source amplifier generates IMD3 signals with 180deg phase difference against the IMD3 of the cascode main amplifier. The linear drive amplifier is designed and fabricated by CMOS 0.18 mum process. The output IP3 of +13 dBm is achieved with the power gain of +11.6 dB, the output P1 dB of + 5.5 dBm, and the power-added efficiency of 21%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号