首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanocrystals doped with trivalent europium ions (Eu3+) and dysprosium ions (Dy3+) were synthesized by the pre- cipitation method. The structural and optical properties of the samples are investigated by the X-ray diffraction (XRD) and photoluminescence (PL). The results show that rare earth ions are incorporated into the lattice of ZnO, and the combination of blue, green and red emissions can be obtained. Specially, the emission can be obtained even under the nonresonant excitation of 320 nm, which is explained based on the energy transfer. The concentration quenching mechanism is also presented in this paper.  相似文献   

2.
Cubic phase CsPbI3 (α‐CsPbI3) perovskite quantum dots (QDs) have received extensive attention due to their all‐inorganic composition and suitable band gap (1.73 eV). However, α‐CsPbI3 QDs might convert to δ‐CsPbI3 (orthorhombic phase with indirect band gap of 2.82 eV) due to easy loss of surface ligands. In addition, commonly used long‐chain ligands (oleic acid, OA, and oleylamine, OLA) hinder efficient charge transport in optoelectronic devices. In order to relieve these drawbacks, OA, OLA, octanoic acid, and octylamine are used as capping ligands for synthesizing high‐quality α‐CsPbI3 QDs. The results indicate that these QDs exhibit excellent optical properties and long‐term stability compared to QDs capped only with OA and OLA. Moreover, QDs with shorter ligands exhibit an enhanced charge transport rate, which improves the power conversion efficiency of photovoltaic devices from 7.76% to 11.87%.  相似文献   

3.
A surface engineering strategy aimed at improving the stability of CsPbI3 perovskite quantum dots (QDs) both in solution and as films is demonstrated, by performing partial ligand exchange with a short chain ligand, 2‐aminoethanethiol (AET), in place of the original long chain ligands, oleic acid (OA) and oleylamine (OAm), used in synthesis. This results in the formation of a compact ligand barrier around the particles, which prevents penetration of water molecules and thus degradation of the films and, in addition, at the same time improves carrier mobility. Moreover, the AET ligand can passivate surface traps of the QDs, leading to an enhanced photoluminescence (PL) efficiency. As a result, AET‐CsPbI3 QDs maintain their optical performance both in solution and as films, retaining more than 95% of the initial PL intensity in water after 1 h, and under ultraviolet irradiation for 2 h. Photodetectors based on the AET‐CsPbI3 QD films exhibit remarkable performance, such as high photoresponsivity (105 mA W?1) and detectivity (5 × 1013 Jones at 450 nm and 3 × 1013 Jones at 700 nm) without an external bias. The photodetectors also show excellent stability, retaining more than 95% of the initial responsivity in ambient air for 40 h without any encapsulation.  相似文献   

4.
Europium (Eu) and Aluminum (Al) co-doped ZnO nanosheets were synthesized by a hydrothermal method. The effects of Al concentration as a dopant and post-annealing of ZnO:Eu nanosheets on its structural, electrical and optical properties were investigated in detail. Prepared samples were characterized structurally using X-ray diffraction (XRD), morphologically using scanning electron microscopy (SEM) and optically using photoluminescence (PL) spectroscopy analyses. No diffraction peak related to dopants in XRD spectrum along with shift in peaks angles relevant to ZnO proved that Al and Eu ions were doped successfully into ZnO nanosheets. This study recommends that extrinsic doping and intrinsic defects have impressive roles on transferring energy to Eu ions at indirect excitations. Based on photoluminescence observations, intra-4f transitions of Eu3+ ions at an excitation wavelength of 390 nm allow a sharp red luminescence. Also the results showed that optical properties of ZnO can be tuned by varying the amount of Al concentration. In comparison with annealed Al doped ZnO:Eu nanostructures, as-grown samples showed the stronger PL peaks which indicated the effective role of intrinsic defects beside of extrinsic doping on energy transfer from ZnO host to Eu3+ ions which consequently led to producing the strong red emission from these sites.  相似文献   

5.
All-inorganic bismuth-halide perovskites are promising alternatives for lead halide perovskites due to their admirable chemical stability and optoelectronic properties; however, these materials deliver inferior photoluminescence (PL) properties, severely hindering their prospects in lighting applications. Here, a novel air-stable but non-emissive perovskite Rb3BiCl6 is synthesized, and the material is used as a prototype to uncover origin of the poor optical performance in bismuth-halide perovskite. It is found that the extremely strong exciton–phonon interactions with a large coupling constant up to 693 meV leads to the seriously nonradiative recombination, which, however, can be effectively suppressed to 347 meV by introducing Sb3+ ions. As a result, Sb3+-doped Rb3BiCl6 exhibits a stable yellow emission with unprecedented PL quantum yield up to 33.6% from self-trapped excitons. Systematic spectroscopic characterizations and theoretical calculations are carried out to unveil the intriguing photophysical mechanisms. This work reveals the effect of exciton–phonon interaction, that is often underemphasized, on a material's photophysical properties.  相似文献   

6.
NaGdF4:Eu3+, NaEuF4, and NaGdF4 nanocrystals were synthesized in the high‐boiling coordinating solvent N‐(2‐hydroxyethyl)‐ethylenediamine (HEEDA). Phase pure nanomaterials, crystallizing either in the cubic α‐phase or the hexagonal β‐phase, were obtained by adjusting one reaction parameter only, i.e., the molar ratio between metal and fluoride ions in the synthesis. The hexagonal β‐phase is formed, if this molar ratio is close to stoichiometric, whereas the cubic α‐phase is obtained in the presence of excess metal ions. The optical properties of the Eu3+ doped samples are different for the two crystal phases. The results indicate an increased number of oxygen impurities close to Eu3+ ions, if excess metal ions are used in the synthesis.  相似文献   

7.
A series of BaLi2Al2Si2N6 (BLASN): xEu2+ phosphors are successfully synthesized and their crystal structure and luminescence properties under varying hydrostatic pressures are reported herein. Structure variation is analyzed using in situ high‐pressure X‐ray diffraction and Rietveld refinements. Based on decay curves and Gaussian fitting of emission spectra, the presence of two photoluminescence centers is demonstrated. BaLi2Al2Si2N6: 0.01Eu2+ exhibits an evident peak position shift from 532 to 567 nm with an increase in pressure to ≈20 GPa. The possible factors and mechanisms for the variations are studied in detail. At a pressure of 16 GPa, BLASN: Eu2+ realizes a narrow yellow emission with a full width at half maximum of ≈70 nm. The addition of BLASN: Eu2+ (16 GPa) to the commercial white light‐emitting diodes combination consisting of an InGaN chip, β‐SiAlON: Eu2+, and red K2SiF6:Mn4+, can increase the color gamut by ≈15%, demonstrating the promising potential of pressure‐driven BLASN: Eu2+ for wide‐color gamut spectroscopy applications. Moreover, the emission shifts arising from pressure variation and the distinct color changes enable its potential utility as an optical pressure sensor; the material exhibits high pressure sensitivity (dλ/dP ≈ 1.58 nm GPa?1) with the advantage of visualization.  相似文献   

8.
Appropriate amount of dopant enhances the luminescence intensity of host material. Inspired by the encouraging electrical properties of perovskite materials, we report on some optical features of Eu3+ activated BaZrxTi(1−x)O3(BZT) powders synthesized by solid state reaction technique (SSRT) that usually produces particles with comparatively bigger size. However, we have succeeded in obtaining particles of smaller size with this technique. The effects of adding Eu3+ to BZT phosphor have been studied in terms of XRD, FESEM, HRTEM, and UV–vis absorption spectroscopy. The X-ray diffractograms ascertain the formation of BZT with single phase while FESEM and HRTEM help in morphological analysis of prepared samples. The thermoluminescence (TL) glow curves for BZT:Eu3+are compared with respect to irradiation time and dopant concentration. The TL intensity is observed to be more for samples irradiated for longer time. It implies that irradiation time is an effectual and practical way to enhance TL intensity. The TL glow curves are deconvoluted using computerized glow curve deconvolution (CGCD) method. The kinetic parameters, which play vital role in characterizing a particular phosphor material, have been calculated and presented for BZT:Eu3+.  相似文献   

9.
Trivalent Eu3+-doped CdS quantum dot (CdS: Eu3+ QD)-sensitized TiO2 nanotube arrays (TNTAs) solar cells are prepared by using the direct adsorption method. The influences of sensitization time, sensitization temperature, and Eu3+ ion concentrations are investigated systematically. The photo-current of the CdS: Eu3+ QDs/TiO2 nanotubes appear at the main absorption region of 320–480 nm, and the maximum incident photon to the current conversion efficiency (IPCE) value is 21% at 430 nm when the sensitization condition is 4% doping Eu3+ concentration, 60 °C sensitization temperature, 8 h sensitization time. Compared with the un-doped CdS QD-sensitized TNTAs, the conversion efficiency and IPCE of CdS: Eu3+ QDs/TNTAs are two times and three times than that of un-doped CdS QDs sensitized TNTAs. This scenario exhibits the potential applications of rare earth elements in QD-sensitized solar cells.  相似文献   

10.
Perovskites have attracted intensive attention as promising materials for the application in various optoelectronic devices due to their large light absorption coefficient, high carrier mobility, and long charge carrier diffusion length. However, the performance of the pure perovskite nanocrystals-based device is extremely restricted by the limited charge transport capability due to the existence of a large number of the grain boundary between perovskite nanocrystals. To address these issues, a high-performance photodetector based on all-inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide heterostructure has been demonstrated through energy band engineering with designed typed-II heterostructure. The photodetector exhibits an ultra-high light-to-dark current ratio of 1.36 × 105, a high responsivity of 2.89 × 102 A W−1, a large detectivity of 1.28 × 1014 Jones, and the response/recovery time of 0.53s/0.62 s. The enhancement of the optoelectronic performance of the heterostructure photodetector is mainly attributed to the efficient charge carrier transfer ability between the all-inorganic CsPbBr3 perovskites and 2D cadmium sulfide selenide resulting from energy band alignment engineering. The charge carriers’ transfer dynamics and the mechanism of the CsPbBr3 perovskites/2D non-layered nanosheets interfaces have also been studied by state-state PL spectra, fluorescence lifetime imaging microscopy, time-resolved photoluminescence spectroscopy, and Kelvin probe force microscopy measurements.  相似文献   

11.
Cubic boron-nitride micropowder with Eu3+ ions (cBN:Eu) is synthesized under conditions of high pressures and temperatures. The structural, morphological, chemical, and optical characteristics of the cBN:Eu micropowder are studied using X-ray diffraction, energy-dispersive X-ray spectral microanalysis, photoluminescence, and optical transmission methods. It is found that the cBN:Eu lattice parameter is ~3.615 Å. The intense red luminescence of the cBN:Eu micropowder (red glow), measured in the visible region of the spectrum in the range from 550 to 750 nm, is attributed to intracenter 4f-electron transitions of the Eu3+ ions. The possible nature of the cBN:Eu micropowder luminescence is discussed.  相似文献   

12.
To address the unsatisfactory pressure sensitivity of luminescent manometers, Eu2+-activated supersensitive microspheres operating in the visible range are developed. A series of Eu2+-doped Sr8Si4O12Cl8 materials are synthesized as microspheres, and their structural and spectroscopic properties are studied theoretically and experimentally. Excited at 350 nm, the samples emit a bright cyan luminescence at ambient conditions that, upon pressure, changes to green emission and finally to yellow light above 7 GPa. Most importantly, a huge red-shift of the emission band from 497.3 to 568.8 nm is observed as the pressure increases, leading to an ultrahigh-pressure sensitivity of 9.69 nm/GPa, which is the highest sensitivity ever reported. The designed microspheres with polychromatic emissions and high-pressure sensitivity are suitable for visual optical pressure sensing, and the applied strategy provides some important guidelines for the development of new optical manometers, allowing pressure monitoring with unprecedented accuracy.  相似文献   

13.
YVO4:Ba2+ nanoparticles with a Ba2+ doping concentration x=0%, 1%, 3%, 5%, 7% and 9% were synthesized by a solvothermal method and then they were codoped with Eu3+ ions by an ion exchange method to form the YVO4:Eu3+,Ba2+ nanoparticles. It was found that the photoluminescence intensity of the as-prepared YVO4:Eu3+,Ba2+ nanoparticles steadily increased with x until x=7%, and then decreased for higher x. Thermal annealing resulted in considerable enhancement in their photoluminescence, and higher annealing temperature led to stronger photoluminescence enhancement. The emission intensity of the YVO4:Eu3+,Ba2+ (x=7%) nanoparticles annealed at 500 °C was about 205% stronger than the sample without Ba2+ doping. Thermal annealing of the ion-exchanged YVO4:Eu3+,Ba2+ nanoparticles at 500 °C and 700 °C resulted in photoluminescence enhancement of about 14 times and 27 times, respectively. The asymmetric ratio of Eu3+ in the ion-exchanged YVO4:Eu3+,Ba2+ nanoparticles was found to increase after annealing.  相似文献   

14.
Eu^3+-activated red-emitting Ba2Gd2Si4013 phosphors are prepared via microwave (MW) synthesis and solid-state (SS) method. The structural and luminescent properties of phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) spectra and scanning electron microscopy (SEM). Upon 393 nm excitation, compared with the sample sintered by SS method, luminescence enhancement is observed in the sample synthesized by MW method. The mechanism of MW synthesis process is discussed in detail. Results indicate that the PL enhancement is probably related to the concave-convex phosphor surfaces and uniform grains, which may reinforce scattering of excitation light. Our research may further promote the understanding of MW synthesis and extend the application of Eu3+-activated Ba_2Gd_2Si_4O_13 in white light-emitting, diodes.  相似文献   

15.
Recently developed CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) hold great potential for various applications owing to their superior optical properties, such as tunable emissions, high quantum efficiency, and narrow linewidths. However, poor stability under ambient conditions and spontaneous ion exchange among QDs hinder their application, for example, as phosphors in white‐light‐emitting diodes (WLEDs). Here, a facile two‐step synthesis procedure is reported for luminescent and color‐tunable CsPbX3–zeolite‐Y composite phosphors, where perovskite QDs are encapsulated in the porous zeolite matrix. First zeolite‐Y is infused with Cs+ ions by ion exchange from an aqueous solution and then forms CsPbX3 QDs by diffusion and reaction with an organic solution of PbX2. The zeolite encapsulation reduces degradation and improves the stability of the QDs under strong illumination. A WLED is fabricated using the resulting microscale composites, with Commission Internationale de I'Eclairage (CIE) color coordinates (0.38, 0.37) and achieving 114% of National Television Standards Committee (NTSC) and 85% of the ITU‐R Recommendation BT.2020 (Rec.2020) coverage.  相似文献   

16.
Organometal perovskite single crystals have been recognized as a promising platform for high-performance optoelectronic devices, featuring high crystallinity and stability. However, a high trap density and structural nonuniformity at the surface have been major barriers to the progress of single crystal-based optoelectronic devices. Here, the formation of a unique nanoisland structure is reported at the surface of the facet-controlled cuboid MAPbI3 (MA = CH3NH3+) single crystals through a cation interdiffusion process enabled by energetically vaporized CsI. The interdiffusion of mobile ions between the bulk and the surface is triggered by thermally activated CsI vapor, which reconstructs the surface that is rich in MA and CsI with reduced dangling bonds. Simultaneously, an array of Cs-Pb-rich nanoislands is constructed on the surface of the MAPbI3 single crystals. This newly reconstructed nanoisland surface enhances the light absorbance over 50% and increases the charge carrier mobility from 56 to 93 cm2 V−1 s−1. As confirmed by Kelvin probe force microscopy, the nanoislands form a gradient band bending that prevents recombination of excess carriers, and thus, enhances lateral carrier transport properties. This unique engineering of the single crystal surface provides a pathway towards developing high-quality perovskite single-crystal surface for optoelectronic applications.  相似文献   

17.
Structure reorganization within perovskite materials has attracted much attention due to its assisted appealing features in optoelectronic devices, such as achieving continue‐wave laser and performance enhancement in photovoltaic devices. Unfortunately, the difficulty of controlling reorganization processing and unclear underlying mechanisms impose an impediment for taking advantage of the structural reorganization in pursuit of distinctive functions in perovskite‐based devices. In this work, using above‐bandgap illumination with a small energy threshold (1.6 mW cm?2) triggering phase transition from orthorhombic to tetragonal in CsPbBr3 is first reported. This photon‐induced structure reorganization is reversible and presents a fast and controllable response (<0.5 s) to light on/off. Raman spectroscopy and density functional theory calculations reveal that such a dynamic structure reorganization is caused by the transition of torsion direction in Pb–Br octahedral, while the diffusion potential difference induced local Coulombic field is proved to drive this process. The findings provide a deep understanding for universal structure reorganization under irradiation in perovskite materials and encourage further study of the novel functions associated with structure reorganization inducing temporal behaviors in optoelectronic devices, for example variations in dielectric constant and band edge fluctuation induced Rashba effects, which show a significant influence on perovskite‐based optoelectronic devices.  相似文献   

18.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   

19.
Nanocrystals, called semiconductor quantum dots (QDs), contain excitons that are three-dimensionally bound. QDs exhibit a discontinuous electronic energy level structure that is similar to that of atoms and exhibit a distinct quantum confinement effect. As a result, QDs have unique electrical, optical, and physical characteristics that can be used in a variety of optoelectronic device applications, including solar cells. In this review article, the stable and controllable synthesis of QD materials is outlined for upscaling solar cells, including material development and device performance enhancement. It includes a systematic variety of device structures for the fabrication of solar cells, such as QD, hybrid QD/organic, hybrid QD/inorganic, perovskite QD, and hybrid 2D MXene QD/perovskite. The mechanisms for the improvement of stability by QD treatment are examined. For example, the 2D MXene QD and/or Cu1.8S nanocrystal doping significantly increases the long-term light and ambient stability of perovskite solar cells, resulting from improved perovskite crystallization, reduced hole transport layer (HTL) aggregation and crystallization of films, and reduced UV-induced photocatalytic activity of the electron transport layer (ETL). For the advancement of QD solar cells and their interaction with various materials, the conclusions from this review are crucial. Finally, future prospects for the development of QD solar cells as well as current challenges are discussed.  相似文献   

20.
Ordered arrays of luminescent YVO4:Eu3+ films with square (side length 19.17 ± 2.05 μm) and dot (diameter 11.20 ± 1.82 μm) patterns were fabricated by two kinds of soft lithography processes, namely, microtransfer molding (μTM) and microcontact printing (μCP), respectively. Both soft‐lithography processes utilize a PDMS elastomeric mold as the stamp combined with a Pechini‐type sol‐gel process to produce luminescent patterns on quartz plates, in which a YVO4:Eu3+ precursor solution was employed as ink. The ordered luminescent YVO4:Eu3+ patterns are revealed by optical micro­scopy and their microstructure, consisting of nanometer‐scale particles, is unveiled by scanning electronic microscopy (SEM) observations. Additionally, photoluminescence (PL) and cathodoluminescence (CL) were carried out to characterize the patterned YVO4:Eu3+ samples. A strong red emission as a result of 5D07F2 transition of Eu3+ was observed under UV‐light or electron‐beam excitation, which implies that combining soft lithography with a Pechini‐type sol‐gel route has potential for fabricating rare‐earth luminescent pixels for next‐generation field‐emission display devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号