首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanide‐doped luminescent nanoparticles are an appealing system for nanothermometry with biomedical applications due to their sensitivity, reliability, and minimal invasive thermal sensing properties. Here, four unique hybrid organic–inorganic materials prepared by combining β‐NaGdF4 and PMOs (periodic mesoporous organosilica) or mSiO2 (mesoporous silica) are proposed. PMO/mSiO2 materials are excellent candidates for biological/biomedical applications as they show high biocompatibility with the human body. On the other hand, the β‐NaGdF4 matrix is an excellent host for doping lanthanide ions, even at very low concentrations with yet very efficient luminescence properties. A new type of Er3+–Yb3+ upconversion luminescence nanothermometers operating both in the visible and near infrared regime is proposed. Both spectral ranges permit promising thermometry performance even in aqueous environment. It is additionally confirmed that these hybrid materials are non‐toxic to cells, which makes them very promising candidates for real biomedical thermometry applications. In several of these materials, the presence of additional voids leaves space for future theranostic or combined thermometry and drug delivery applications in the hybrid nanostructures.  相似文献   

2.
The efficacy of radiation therapy (RT) is often limited by the poor response of hypoxia inside most solid tumors. The development of a theranostic nanoplatform for precision‐imaging‐guided sensitized RT for tumor hypoxia is still challenging. Herein, the creation of hypoxia‐targeted dendrimer‐entrapped gold nanoparticles complexed with gadolinium(III) (Gd‐Au DENPs‐Nit) for dual‐mode CT/MR imaging and sensitized RT of hypoxic tumors is reported. In this work, generation 5 poly(amidoamine) dendrimers are partially conjugated with Gd(III) chelator, entrapped with Au nanoparticles, and conjugated with hypoxia‐targeting agent nitroimidazole via a polyethylene glycol linker, and ending with chelation of Gd(III) and conversion of their leftover amine termini to acetamides. The designed dendrimer‐based nanohybrids with 3.2 nm Au cores exhibit an excellent X‐ray attenuation effect, acceptable r1 relaxivity (1.32 mM?1 s?1), and enhanced cellular uptake in hypoxic cancer cells, affording efficient dual‐mode CT/MR imaging of tumor hypoxia. Under X‐ray irradiation, the Gd‐Au DENPs‐Nit nanohybrids can produce reactive oxygen species, promote DNA damage, and prevent DNA repair, facilitating sensitized RT of hypoxic cancer cells in vitro and tumor hypoxia in vivo. The developed hypoxia‐targeted dendrimer‐based nanohybrids may be employed as both contrast agents and nanosensitizers for precision tumor hypoxia imaging and sensitized tumor RT.  相似文献   

3.
Multifunctional nanodrugs integrating multiple therapeutic and imaging functions may find tremendous biomedical applications. However, the development of a simple yet potent theranostic nanosystem with a high payload and microenvironment responsiveness enhancing imaging‐guided cancer therapy is still a great challenge. Herein, a kind of MnCO‐entrapped mesoporous polydopamine nanoparticles are developed, which reach a 1.5 mg payload per gram carrier and exhibit marked theranostic capability through effective CO/Mn2+ generation and photothermal conversion inside the H+ and H2O2‐enriched tumor microenvironment, for a magnetic resonance/photoacoustic bimodal imaging‐guided tumor therapy. The multifunctional nanosystem exhibits a biocompatibility highly desirable for in vivo application and superior performance in inhibiting tumor growth and recurrence via combination CO and photothermal therapy.  相似文献   

4.
Fabricating theranostic nanoparticles combining multimode disease diagnosis and therapeutic has become an emerging approach for personal nanomedicine. However, the diagnostic capability, biocompatibility, and therapeutic efficiency of theranostic nanoplatforms limit their clinic widespread applications. Targeting to the theme of accurate diagnosis and effective therapy of cancer cells, a multifunctional nanoplatform of aptamer and polyethylene glycol (PEG) conjugated MoS2 nanosheets decorated with Cu1.8S nanoparticles (ATPMC) is developed. The ATPMC nanoplatform accomplishes photoluminescence imaging, photoacoustic imaging, and photothermal imaging for in vitro and in vivo tumor cells imaging diagnosis. Meanwhile, the ATPMC nanoplatform facilitates selective delivery of gene probe to detect intracellular microRNA aberrantly expressed in cancer cells and anticancer drug doxorubicin (DOX) for chemotherapy. Moreover, the synergistic interaction of MoS2 and Cu1.8S renders the ATPMC nanoplatform with superb photothermal conversion efficiency. The ATPMC nanoplatform loaded with DOX displays near‐infrared laser‐induced programmed chemotherapy and advanced photothermal therapy, and the targeted chemo‐photothermal therapy presents excellent antitumor efficiency.  相似文献   

5.
A general polyelectrolyte‐mediated self‐assembly technique is adopted to prepare multifunctional mesoporous nanostructures as an effective biological bimodal imaging probe and magnetically targeted anticancer drug (doxorubicin) delivery systems (DDSs). A positively charged polyelectrolyte (PAH) and negatively charged fluorescent quantum dots (QDs) are successfully assembled onto the surface of ellipsoidal Fe3O4@SiO2@mSiO2 composite nanostructures to combine the merits of tunable fluorescent/magnetic properties, mesoporous nanostructures for drug loading, and the uniform ellipsoidal morphology for enhanced uptake by cancer cells. The resultant nanoellipsoids are homogeneously coated with four layers of PAH/QDs, with an additional PAH layer to make the ellipsoidal surface positively charged. This acts to enhance cellular uptake, which is driven by electrostatic interactions between the positive nanoparticle surface and the negative cell surface. The high biocompatibility of the achieved multifunctional nanoellipsoids is demonstrated by a cell‐cytotoxicity assay, hemolyticity against human red blood cells, and coagulation evaluation of fresh human blood plasma after exposure to the nanoparticles. Moreover, confocal microscopy and bio‐TEM observations show that the cell uptake of nanocarriers is dose‐dependent, and the nanoparticles accumulate mostly in the cytoplasm. The excellent capability of the nanocarriers as contrast agents for MRI is demonstrated by the relatively high r2 value (143 mM?1s?1) and preliminary in vivo characterization. More importantly, the doxorubicin‐loaded DDSs show higher cytotoxicity than the free doxorubicin drug as contributed by the intracellular release pathway of doxorubicin from the DDSs, indicating the potential application of the obtained multifunctional mesoporous nanoellipsoids as highly effective bimodal imaging probes and DDSs for cancer diagnosis and chemotherapy, simultaneously.  相似文献   

6.
Nanomaterials with renal clearance from the body within a reasonable timescale have shown great promises in the area of nanomedicine recently. However, the integration of theranostic and renal clearance properties into a single ultrasmall nanostructure remains a great challenge. Herein, meso‐tetra(4‐carboxyphenyl)porphyrin (TCPP) structure is utilized as a model, for the first time using noninvasive dynamic positron emission tomography (PET) imaging to investigate the balance of the renal clearance and tumor uptake behaviors of polyethylene glycol (PEG)‐modified porphyrin nanoparticles (TCPP‐PEG) with various molecular weights. This study finds that TCPP‐PEG nanoparticles with larger molecular weight show higher tumor uptake due to the enhanced permeability and retention effect, while the lower ones tend to be better for renal clearance. Based on dynamic PET and fluorescence dual‐modal imaging modalities, the TCPP‐PEG10K nanoparticles seem to be an excellent choice for the balance of renal clearance and tumor retention. In vitro and in vivo photodynamic therapy confirms an excellent therapeutic efficacy. Therefore, this work presents a simplified approach to fabricate and select biocompatible multifunctional TCPP‐PEG‐based theranostic agents with renal clearance behavior, which highlights the clinical application potential of TCPP‐PEG nanoparticles as theranostic probes for imaging‐guided cancer therapy.  相似文献   

7.
Realizing precise control of the therapeutic process is crucial for maximizing efficacy and minimizing side effects, especially for strategies involving gene therapy (GT). Herein, a multifunctional Prussian blue (PB) nanotheranostic platform is first designed and then loaded with therapeutic plasmid DNA (HSP70‐p53‐GFP) for near‐infrared (NIR) light‐triggered thermo‐controlled synergistic GT/photothermal therapy (PTT). Due to the unique structure of the PB nanocubes, the resulting PB@PEI/HSP70‐p53‐GFP nanoparticles (NPs) exhibit excellent photothermal properties and pronounced tumor‐contrast performance in T1/T2‐weighted magnetic resonance imaging. Both in vitro and in vivo studies demonstrate that mild NIR‐laser irradiation (≈41 °C) activates the HSP70 promoter for tumor suppressor p53‐dependent apoptosis, while strong NIR‐laser irradiation (≈50 °C) induces photothermal ablation for cellular dysregulation and necrosis. Significant synergistic efficacy can be achieved by adjusting the NIR‐laser irradiation (from ≈41 to ≈50 °C), compared to using GT or PTT alone. In addition, in vitro and in vivo toxicity studies demonstrate that PB@PEI/HSP70‐p53‐GFP NPs have good biocompatibility. Therefore, this work provides a promising theranostic approach for controlling combined GT and PTT via the heat‐shock response.  相似文献   

8.
Nanomaterials are of enormous value for biomedical applications because of their customizable features. However, the material properties of nanomaterials can be altered substantially by interactions with tissue thus making it important to assess them in the specific biological context to understand and tailor their effects. Here, a genetically controlled system is optimized for cellular uptake of superparamagnetic ferritin and subsequent trafficking to lysosomes. High local concentrations of photoabsorbing magnetoferritin give robust contrast in optoacoustic imaging and allow for selective photoablation of cells overexpressing ferritin receptors. Genetically controlled uptake of the biomagnetic nanoparticles also strongly enhances third‐harmonic generation due to the change of refractive index caused by the magnetite–protein interface of ferritins entrapped in lysosomes. Selective uptake of magnetoferritin furthermore enables sensitive detection of receptor‐expressing cells by magnetic resonance imaging, as well as efficient magnetic cell sorting and manipulation. Surprisingly, a substantial increase in the blocking temperature of lysosomally entrapped magnetoferritin is observed, which allows for specific ablation of genetically defined cell populations by local magnetic hyperthermia. The subcellular confinement of superparamagnetic ferritins thus enhances their physical properties to empower genetically controlled interrogation of cellular processes with deep tissue penetration.  相似文献   

9.
The combination of biocompatible superparamagnetic and photoluminescent nanoparticles (NPs) is intensively studied as highly promising multifunctional (magnetic confinement and targeting, imaging, etc.) tools in biomedical applications. However, most of these hybrid NPs exhibit low signal contrast and shallow tissue penetration for optical imaging due to tissue‐induced optical extinction and autofluorescence, since in many cases, their photoluminescent components emit in the visible spectral range. Yet, the search for multifunctional NPs suitable for high photoluminescence signal‐to‐noise ratio, deep‐tissue imaging is still ongoing. Herein, a biocompatible core/shell/shell sandwich structured Fe3O4@SiO2@NaYF4:Nd3+ nanoplatform possessing excellent superparamagnetic and near‐infrared (excitation) to near‐infrared (emission), i.e., NIR‐to‐NIR photoluminescence properties is developed. They can be rapidly magnetically confined, allowing the NIR photoluminescence signal to be detected through a tissue as thick as 13 mm, accompanied by high T2 relaxivity in magnetic resonance imaging. The fact that both the excitation and emission wavelengths of these NPs are in the optically transparent biological windows, along with excellent photostability, fast magnetic response, significant T2‐contrast enhancement, and negligible cytotoxicity, makes them extremely promising for use in high‐resolution, deep‐tissue dual‐mode (optical and magnetic resonance) in vivo imaging and magnetic‐driven applications.  相似文献   

10.
Given the promise of carbon nanotubes (CNTs) for photothermal therapy, drug delivery, tissue engineering, and gene therapy, there is a need for non‐invasive imaging methods to monitor CNT distribution and fate in the body. In this study, non‐ionizing whole‐body high field magnetic resonance imaging (MRI) is used to follow the distribution of water‐dispersible non‐toxic functionalized CNTs administrated intravenously to mice. Oxidized CNTs are endowed with positive MRI contrast properties by covalent functionalization with the chelating ligand diethylenetriaminepentaacetic dianhydride (DTPA), followed by chelation to Gd3+. The structural and magnetic properties, MR relaxivities, cellular uptake, and application for MRI cell imaging of Gd‐CNTs in comparison to the precursor oxidized CNTs are evaluated. Despite the intrinsic T2 contrast of oxidized CNTs internalized in macrophages, the anchoring of paramagnetic gadolinium onto the nanotube sidewall allows efficient T1 contrast and MR signal enhancement, which is preserved after CNT internalization by cells. Hence, due to their high dispersibility, Gd‐CNTs have the potential to produce positive contrast in vivo following injection into the bloodstream. The uptake of Gd‐CNTs in the liver and spleen is assessed using MRI, while rapid renal clearance of extracellular Gd‐CNTs is observed, confirming the evidences of other studies using different imaging modalities.  相似文献   

11.
Environmental friendly metal halides have become emerging candidates as energy downconverting emitters for lighting and X-ray imaging applications. Herein, luminescent single crystals of tetramethylammonium manganese chloride (C4H12NMnCl3) and tetraethylammonium bromide ((C8H20N)2MnBr4) are synthesized via a facile room-temperature evaporation method. C4H12NMnCl3 and (C8H20N)2MnBr4 with octahedrally and tetrahedrally coordinated Mn2+ have correspondingly exhibited red and green emission peaking at 635 and 515 nm both originating from 4T16A1 transition of Mn2+ with high photoluminescence quantum yield (PLQY) of 91.8% and 85.1% benefiting from their specific crystal structures. Thanks to their strong photoexcitation under blue light, high PLQY, tunable emission spectra, good environmental stability, the white light-emitting diode based on blending of C4H12NMnCl3 and (C8H20N)2MnBr4 delivers an outstanding luminous efficacy of 96 lm W−1, approaching commercial level, and shows no obvious photoluminescence intensity degradation after 3000 h under operation. In addition, manganese halides also demonstrate interesting characteristics under X-ray excitation, C4H12NMnCl3 and (C8H20N)2MnBr4 exhibit steady-state X-ray light yields of 50 500 and 24 400 photons MeV−1, low detectable limits of 36.9 and 24.2 nGyair s−1, good radiation hardness, and X-ray imaging demonstration with high-resolution of 5 lp mm−1. This work presents a new avenue for luminescent Mn-based metal halides toward multifunctional light-emitting applications.  相似文献   

12.
The ideal theranostic nanoplatform for tumors is a single nanoparticle that has a single semiconductor or metal component and contains all multimodel imaging and therapy abilities. The design and preparation of such a nanoparticle remains a serious challenge. Here, with FeS2 as a model of a semiconductor, the tuning of vacancy concentrations for obtaining “all‐in‐one” type FeS2 nanoparticles is reported. FeS2 nanoparticles with size of ≈30 nm have decreased photoabsorption intensity from the visible to near‐infrared (NIR) region, due to a low S vacancy concentration. By tuning their shape/size and then enhancing the S vacancy concentration, the photoabsorption intensity of FeS2 nanoparticles with size of ≈350 nm (FeS2‐350) goes up with the increase of the wavelength from 550 to 950 nm, conferring the high NIR photothermal effect for thermal imaging. Furthermore, this nanoparticle has excellent magnetic properties for T2‐weighted magnetic resonance imaging (MRI). Subsequently, FeS2‐350 phosphate buffer saline (PBS) dispersion is injected into the tumor‐bearing mice. Under the irradiation of 915‐nm laser, the tumor can be ablated and the metastasis lesions in liver suffer significant inhibition. Therefore, FeS2‐350 has great potential to be used as novel “all‐in‐one” multifunctional theranostic nanoagents for MRI and NIR dual‐modal imaging guided NIR‐photothermal ablation therapy (PAT) of tumors.  相似文献   

13.
The poly(maleic anhydride‐alt‐1‐octadecene‐poly(ethylene glycol)) (C18PMH‐PEG) modified single‐walled carbon nanohorns (SWNHs) are designed with high stability and biocompatibility. The as‐prepared SWNHs/C18PMH‐PEG not only can serve as an excellent photothermal agent but also can be used as a promising photoacoustic imaging (PAI) agent both in vitro and in vivo due to its strong absorption in the near infrared (NIR) region. The PAI result reveals that the SWNHs/C18PMH‐PEG possesses ultra long blood circulation time and can significantly be accumulated at the tumor site through the enhanced penetration and retention (EPR) effect. The maximum accumulation of SWNHs/C18PMH‐PEG at tumor site could be achieved at the time point of 24 h after intravenous injection, which is considered to be the optimal time for the 808 nm laser treatment. The subsequent photothermal ablation of tumors can be achieved without triggering any side effects. Therefore, a PAI guided PTT platform based on SWNHs is proposed and highlights the potential theranostic application for biomedical uses.  相似文献   

14.
Hyperbranched polyglycerol‐grafted, magnetic Fe3O4 nanoparticles (HPG‐grafted MNPs) are successfully synthesized by surface‐initiated ring‐opening multibranching polymerization of glycidol. Reactive hydroxyl groups are immobilized on the surface of 6–9 nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 6‐hydroxy caproic acid. The surface hydroxyl groups are treated with aluminum isopropoxide to form the nanosized macroinitiators. The successful grafting of HPG onto the nanoparticles is confirmed by infrared and X‐ray photoelectron spectroscopy. The HPG‐grafted MNPs have a uniform hydrodynamic diameter of (24.0 ± 3.0) nm, and are very stable in aqueous solution, as well as in cell culture medium, for months. These nanoparticles have great potential for application as a new magnetic resonance imaging contrast agent, as evidenced by their lack of cytotoxicity towards mammalian cells, low uptake by macrophages, excellent stability in aqueous medium and magnetic fields, and favorable magnetic properties. Furthermore, the possibility of functionalizing the hydroxyl end‐groups of the HPG with cell‐specific targeting ligands will expand the range of applications of these MNPs.  相似文献   

15.
Mesoporous silica nanoparticles (MSNs) have emerged as promising biomaterials for drug delivery and cell tracking applications, for which MRI is the medical imaging modality of choice. In this contribution, MRI contrast agents (DTPA‐Gd) and polyethylene glycol (PEG) are grafted selectively at the surface of MSNs, in order to achieve optimal relaxometric and drug loading performances. In fact, DTPA and PEG grafting procedures reported until now, have resulted in significant pore obstruction, which is detrimental to the drug delivery function of MSNs. This usually induces a dramatic decrease in surface area and pore volume, thus limiting drug loading capacity. Therefore, these molecules must be selectively grafted at the outer surface of MSNs. In this study, 3D pore network MSNs (MCM‐48‐type) are synthesized and functionalized with a straightforward and efficient grafting procedure in which DTPA and PEG are selectively grafted at the outer surface of MSNs. No pore blocking is observed, and more than 90% of surface area, pore volume and pore diameter are retained. The thus‐treated particles are colloidally stable in SBF and cell culture media, they are not cytotoxic and they have high drug loading capacity. Upon labeling with Gd, the nanoparticle suspensions have strong relaxometric properties (r2/r1 = 1.47, r1 = 23.97 mM?1 s?1), which confers a remarkable positive contrast enhancement potential to the compound. The particles could serve as efficient drug carriers, as demonstrated with a model of daunorubicin submitted to physiological conditions. The selective nanoparticle surface grafting procedures described in the present article represent a significant advance in the design of high colloidal stability silica‐based vectors with high drug loading capacity, which could provide novel theranostic nanocompounds.  相似文献   

16.
Facile preparation of multifunctional theranostic nanoplatforms with well‐controlled morphology and sizes remains an attractive in the area of nanomedicine. Here, a new kind of 2D transition metal dichalcogenide, rhenium disulfide (ReS2) nanosheets, with uniform sizes, strong near‐infrared (NIR) light, and strong X‐ray attenuation, is successfully synthesized. After surface modification with poly(ethylene glycol) (PEG), the synthesized ReS2‐PEG nanosheets are stable in various physiological solutions. In addition to their contrasts in photoacoustic imaging and X‐ray computed tomography imaging because of their strong NIR light and X‐ray absorptions, respectively, such ReS2‐PEG nanosheets can also be tracked under nuclear imaging after chelator‐free labeling with radioisotope ions, 99mTc4+. Efficient tumor accumulation of ReS2‐PEG nanosheets is then observed after intravenous injection into tumor‐bearing mice under triple‐modal imaging. The combined in vivo photothermal radiotherapy is further conducted, achieving a remarkable synergistic tumor destruction effect. Finally, no obvious toxicity of ReS2‐PEG nanosheets is observed from the treated mice within 30 d. This work suggests that such ultrathin ReS2 nanosheets with well‐controlled morphology and uniform sizes may be a promising type of multifunctional theranostic agent for remotely triggered cancer combination therapy.  相似文献   

17.
The practical application of lithium (Li) metal battery is impeded by the Li dendrite growth and unstable solid electrolyte interphase (SEI) layer. Herein, an ultra-stretchable and ionic conducting chemically crosslinked pressure-sensitive adhesive (cPSA) synthesized via the copolymerization of 2-ethylhexyl acrylate and acrylic acid with poly(ethyleneglycol)dimethacrylate as crosslinker (short for 70cPSA), is developed as both artificial SEI layer and solid polymer electrolyte (SPE) for stable Li-metal electrode, enabling all-solid-state Li metal batteries with excellent cycling performance. As an artificial SEI layer, the 70cPSA-modified electrodes exhibit excellent electrochemical performance in Li|70cPSA@Cu half cells and 70cPSA@Li|70cPSA@Li symmetric cells. In full cells with LiFePO4 (LFP) as cathode, the 70cPSA@Li|LFP cell exhibits stable cycling performance over 250 cycles. Utilized as SPE, the all-solid-state Li|SPE|LFP cell delivers excellent cycling stability with a capacity retention of 86% over 500 cycles. With high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) as cathode, the Li|SPE|NMC811 cell exhibits a discharge capacity of 124.3 mAh g−1 with a capacity retention of 71% after 200 cycles. The rational design of PSAs and investigation of their dual role for stable and safe Li-metal batteries may shed a light on adhesive polymers for battery applications.  相似文献   

18.
With the emergence of antibiotic resistance, developing new antibiotics and therapies for combating bacterial infections is urgently needed. Herein, a series of quaternized fluorescent silicon nanoparticles (SiNPs) are facilely prepared by the covalent reaction between amine‐functionalized SiNPs and carboxyl‐containing N‐alkyl betaines. It is found that the bactericidal efficacy of these quaternized SiNPs increases with the length of the N‐alkyl chain, and SiNPs conjugated with N,N‐dimethyl‐N‐octadecylbetaine (BS‐18), abbreviated as SiNPs‐C18, show the best antibacterial effect, whose minimum inhibitory concentrations for Gram‐positive bacteria are 1–2 μg mL?1. In vivo tests further confirm that SiNPs‐C18 have excellent antibacterial efficacy and greatly reduce bacterial load in the infectious sites. The SiNPs‐C18 exhibit low cytotoxicity toward mammalian cells (including normal liver and lung cells, red blood cells, and macrophages), enabling them to be useful for clinical applications. Besides, the quaternized SiNPs exhibit polarity‐dependent fluorescence emission property and can selectively image Gram‐positive bacteria, thereby providing a simple method to successfully differentiate Gram‐positive and Gram‐negative bacteria. The present work represents the first example that successfully turns fluorescent SiNPs into metal‐free NP‐based antibiotics with simultaneous bacterial imaging and killing capability, which broadens the applications of fluorescent SiNPs and advances the development of novel antibacterial agents.  相似文献   

19.
The integration of diagnostic and therapeutic functionalities on a single theranostic nano‐system holds great promise to enhance the accuracy of diagnosis and improve the efficacy of therapy. Herein, a multifunctional polymeric nano‐micelle system that contains a photosensitizer chlorin e6 (Ce6) is successfully fabricated, at the same time serving as a chelating agent for Gd3+, together with a near‐infrared (NIR) dye, IR825. With a r1 relativity 7 times higher than that of the commercial agent Magnevist, strong fluorescence offered by Ce6, and high NIR absorbance attributed to IR825, these theranostic micelles can be utilized as a contrast agent for triple modal magnetic resonance (MR), fluorescence, and photoacoustic imaging of tumors in a mouse model. The combined photothermal and photodynamic therapy is then carried out, achieving a synergistic anti‐tumor effect both in vitro and in vivo. Different from single photo treatment modalities which only affect the superficial region of the tumor under mild doses, the combination therapy at the same dose using this agent is able to induce significant damage to both superficial and deep parts of the tumor. Therefore, this work presents a polymer based theranostic platform with great potential in multimodal imaging and combination therapy of cancer.  相似文献   

20.
A theranostic platform combining synergistic therapy and real‐time imaging attracts enormous attention but still faces great challenges, such as tedious modifications and lack of efficient accumulation in tumor. Here, a novel type of theranostic agent, bismuth sulfide@mesoporous silica (Bi2S3@mPS) core‐shell nanoparticles (NPs), for targeted image‐guided therapy of human epidermal growth factor receptor‐2 (HER‐2) positive breast cancer is developed. To generate such NPs, polyvinylpyrrolidone decorated rod‐like Bi2S3 NPs are chemically encapsulated with a mesoporous silica (mPS) layer and loaded with an anticancer drug, doxorubicin. The resultant NPs are then chemically conjugated with trastuzumab (Tam, a monoclonal antibody targeting HER‐2 overexpressed breast cancer cells) to form Tam‐Bi2S3@mPS NPs. By in vitro and in vivo studies, it is demonstrated that the Tam‐Bi2S3@mPS bear multiple desired features for cancer theranostics, including good biocompatibility and drug loading ability as well as precise and active tumor targeting and accumulation (with a bismuth content in tumor being ≈16 times that of nontargeted group). They can simultaneously serve both as an excellent contrast enhancement probe (due to the presence of strong X‐ray‐attenuating bismuth element) for computed tomography deep tissue tumor imaging and as a therapeutic agent to destruct tumors and prevent metastasis by synergistic photothermal‐chemo therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号