首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nitride (SiN) films fabricated by remote plasma‐enhanced chemical vapour deposition (RPECVD) have recently been shown to provide an excellent electronic passivation of silicon surfaces. This property, in combination with its large refractive index, makes RPECVD SiN an ideal candidate for a surface‐passivating antireflection coating on silicon solar cells. A major problem of these films, however, is the fact that the extinction coefficient increases with increasing refractive index. Hence, a careful optimisation of RPECVD SiN based antireflection coatings on silicon solar cells must consider the light absorption within the films. Optimal optical performance of silicon solar cells in air is obtained if the RPECVD SiN films are combined with a medium with a refractive index below 1·46, such as porous SiO2. In this study, the dispersion of the refractive indices and the extinction coefficients of RPECVD SiN, porous SiO2, and several other relevant materials (MgF2, TiOx, ZnS, B270 crown glass, soda lime glass, ethylene vinyl acetate and resin as used in commercial photovoltaic modules) are experimentally determined. Based on these data, the short‐circuit currents of planar silicon solar cells covered by RPECVD SiN and/or porous SiO2 single‐ and multi‐layer antireflection coatings are numerically maximised for glass‐encapsulated as well as non‐encapsulated operating conditions. The porous SiO2/RPECVD SiN‐based antireflection coatings optimised for these applications are shown to be universally suited for silicon solar cells, regardless of the internal blue or red response of the cells. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
We have studied the surface passivation of silicon by deposition of silicon nitride (SiN) in an industrial‐type inline plasma‐enhanced chemical vapor deposition (PECVD) reactor designed for the continuous coating of silicon solar cells with high throughput. An optimization study for the passivation of low‐resistivity p‐type silicon has been performed exploring the dependence of the film quality on key deposition parameters of the system. With the optimized films, excellent passivation properties have been obtained, both on undiffused p‐type silicon and on phosphorus‐diffused n+ emitters. Using a simple design, solar cells with conversion efficiencies above 20% have been fabricated to prove the efficacy of the inline PECVD SiN. The passivation properties of the films are on a par with those of high‐quality films prepared in small‐area laboratory PECVD reactors. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Expanding thermal plasma (ETP) deposited silicon nitride (SiN) with optical properties suited for the use as antireflection coating (ARC) on silicon solar cells has been used as passivation layer on textured monocrystalline silicon wafers. The surface passivation behavior of these high‐rate (>5 nm/s) deposited SiN films has been investigated for single layer passivation schemes and for thermal SiO2/SiN stack systems before and after a thermal treatment that is normally used for contact‐firing. It is shown that as‐deposited ETP SiN used as a single passivation layer almost matches the performance of a thermal oxide. Furthermore, the SiN passivation behavior improves after a contact‐firing step, while the thermal oxide passivation degrades which makes ETP SiN a better alternative for single passivation layer schemes in combination with a contact‐firing step. Moreover, using the ETP SiN as a part of a thermal SiO2/SiN stack proves to be the best alternative by realizing very low dark saturation current densities of <20 fA/cm2 on textured solar‐grade FZ silicon wafers and this is further improved to <10 fA/cm2 after the anneal step. Optical and electrical film characterizations have also been carried out on these SiN layers in order to study the behavior of the SiN before and after the thermal treatment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We have achieved a very high conversion efficiency of 21·5% in HIT cells with a size of 100·3 cm2. One of the most striking features of the HIT cell is its high open‐circuit voltage Voc, in excess of 710 mV. This is due to the excellent surface passivation at the a‐Si/c‐Si heterointerface realized by Sanyo's successful technologies for fabricating high‐quality a‐Si films and solar cells with low plasma damage processes. We have studied ways to treat the surface to produce a good interface throughout our fabrication processes. We have also investigated the deposition conditions of a‐Si layers for optimizing the barrier height for the minority carriers in the heterojunction. Our approach for obtaining HIT cells with a high Voc is reviewed here. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Hot‐wire chemical vapor deposition (HWCVD) is a promising technique for very fast deposition of high quality thin films. We developed processing conditions for device‐ quality silicon nitride (a‐SiNx:H) anti‐reflection coating (ARC) at high deposition rates of 3 nm/s. The HWCVD SiNx layers were deposited on multicrystalline silicon (mc‐Si) solar cells provided by IMEC and ECN Solar Energy. Reference cells were provided with optimized parallel plate PECVD SiNx and microwave PECVD SiNx respectively. The application of HWCVD SiNx on IMEC mc‐Si solar cells led to effective passivation, evidenced by a Voc of 606 mV and consistent IQE curves. For further optimization, series were made with HW SiNx (with different x) on mc‐Si solar cells from ECN Solar Energy. The best cell efficiencies were obtained for samples with a N/Si ratio of 1·2 and a high mass density of >2·9 g/cm3. The best solar cells reached an efficiency of 15·7%, which is similar to the best reference cell, made from neighboring wafers, with microwave PECVD SiNx. The IQE measurements and high Voc values for these cells with HW SiNx demonstrate good bulk passivation. PC1D simulations confirm the excellent bulk‐ and surface‐passivation for HW SiNx coatings. Interesting is the significantly higher blue response for the cells with HWCVD SiNx when compared to the PECVD SiNx reference cells. This difference in blue response is caused by lower light absorption of the HWCVD layers (compared to microwave CVD; ECN) and better surface passivation (compared to parallel plate PECVD; IMEC). The application of HW SiNx as a passivating antireflection layer on mc‐Si solar cells leads to efficiencies comparable to those with optimized PECVD SiNx coatings, although HWCVD is performed at a much higher deposition rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Solar cells have been prepared on Bayer ribbon-growth-on-substrate (RGS) crystalline silicon. This low-cost material contains a fair amount of impurities and crystal defects whose adverse effect on solar cell performance may be significantly reduced by gettering and bulk passivation treatments. This is demonstrated in solar cells by having a mechanical surface texturization, an aluminium gettering as well as a hydrogen passivation step which led to an open circuit voltage Voc of 538 mV, a short circuit current density Jsc of 28·5 mA cm−2, a fill factor of 72·4% and a confirmed record efficiency β of 11·1% (2×2 cm2). Strong improvements in the diffusion length could be observed after the hydrogen treatment. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
A solar cell process designed to utilise low‐temperature plasma‐enhanced chemical vapour deposited (PECVD) silicon nitride (SiNx) films as front and rear surface passivation was applied to fabricate multicrystalline silicon (mc‐Si) solar cells. Despite the simple photolithography‐free processing sequence, an independently confirmed efficiency of 18.1% (cell area 2 × 2 cm2) was achieved. This excellent efficiency can be predominantly attributed to the superior quality of the rear surface passivation scheme consisting of an SiNx film in combination with a local aluminium back‐surface field (LBSF). Thus, it is demonstrated that low‐temperature PECVD SiNx films are well suited to achieve excellent rear surface passivation on mc‐Si. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we report on commercially viable screen printing (SP) technology to form boron emitters. A screen‐printed boron emitter and ion‐implanted phosphorus back surface field were formed simultaneously by a co‐annealing process. Front and back surfaces were passivated by chemically grown oxide capped with plasma‐enhanced chemical vapor deposition silicon nitride stack. Front and back contacts were formed by traditional SP and firing processes with silver/aluminum grid on front and local silver back contacts on the rear. This resulted in 19.6% efficient large area (239 cm2) n‐type solar cells with an open‐circuit voltage Voc of 645 mV, short‐circuit current density Jsc of 38.6 mA/cm2, and fill factor of 78.6%. This demonstrates the potential of this novel technology for production of low‐cost high‐efficiency n‐type silicon solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Titanium dioxide is shown to afford good passivation to non‐diffused silicon surfaces and boron‐diffused surfaces after a low‐temperature anneal. The passivation most likely owes to the significant levels of negative charge instilled in the films, and passivation is enhanced by illumination—advantageous for solar cells—indicating that a titanium dioxide photoreaction is at least partly responsible for the low surface recombination. We demonstrate a surface recombination velocity of less than 30 cm/s, on a 5‐Ω cm n‐type silicon, and an emitter saturation current density of 90 fA/cm2 on a 200‐Ω/sq boron diffusion. If these titanium dioxide passivated boron‐diffused surfaces were employed in a crystalline silicon solar cell, an open‐circuit voltage as high as 685 mV could be achieved. Given that TiO2 has a high refractive index and was deposited with atmospheric pressure chemical vapour deposition, an inexpensive technique, it has the potential as a passivating antireflection coating for industrial boron‐diffused silicon solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Silicon solar cells with passivated rear side and laser‐fired contacts were produced on float zone material. The front side contacts are built up in two steps, seed and plate. The seed layer is printed using an aerosol jet printer and a silver ink. After firing this seed layer through the silicon nitride layer, the conductive layer is grown by light induced plating. The contact formation is studied on different emitter sheet resistances, 55 Ω/sq, 70 Ω/sq, and on 110 Ω/sq. These emitters are passivated with a PECVD silicon nitride layer which also acts as an anti‐reflection coating. Even on the 110 Ω/sq emitters it was possible to reach a fill factor of 80·1%. The electrical properties i.e., the contact resistance of the front side contacts are studied by transfer length model (TLM) measurements. On a cell area of 4 cm2 and emitter sheet resistance of 110 Ω/sq, a record efficiency of 20·3% was achieved. Excellent open‐circuit voltage (Voc) and short‐circuit current (jsc) values of 661 mV and 38·4 mA/cm2 were obtained due to the low recombination in the 110 Ω/sq emitter and at the passivated rear surface. These results show impressively that it is possible to contact emitter profiles with a very high efficiency potential using optimized printing technologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The low cost and high quality of multicrystalline silicon (mc‐Si) based on directional solidification has become the main stream in photovoltaic (PV) industry. The mc‐Si quality affects directly the conversion efficiency of solar cells, and thus, it is crucial to the cost of PV electricity. With the breakthrough of crystal growth technology, the so‐called high‐performance mc‐Si has increased about 1% in solar cell efficiency from 16.6% in 2011 to 17.6% in 2012 based on the whole ingot performance. In this paper, we report our development of this high‐performance mc‐Si. The key ideas behind this technology for defect control are discussed. With the high‐performance mc‐Si, we have achieved an average efficiency of near 17.8% and an open‐circuit voltage (Voc) of 633 mV in production. The distribution of cell efficiency was rather narrow, and low‐efficiency cells (<17%) were also very few. The power of the 60‐cell module using the high‐efficiency cells could reach 261 W as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Nanostructured silicon (Si) can provide improved light harvest efficiencies in organic‐Si heterojunction solar cells due to its low light reflection ratio compared with planar one. However, the associated large surface/volume ratio of nanostructured Si suffers from serious surface recombination as well as poor adhesion with organics in organic‐Si heterojunction solar cells, which leads to an inferior open‐circuit voltage (Voc). Here, we develop a simple and effective method to suppress charge recombination as well as enhancing adhesion force between nanostructured Si and organics by incorporating a silane chemical, namely 3‐glycidoxypropyltrimethoxydsilane (GOPS). GOPS can chemically graft onto nanostructured Si and improve the aqueous organic wetting properties, suppressing surface charge recombination velocity dramatically. In addition, this chemically grafted layer can enhance adhesion force between organics and Si. In such a way, a record Voc of 640 mV associated with a power conversion efficiency of 14.1% is obtained for organic‐nanostructured Si heterojunction devices. These findings suggest a promising approach to low‐cost and simple fabrication for high‐performance organic‐Si solar cells.  相似文献   

14.
Bulk and surface passivation by silicon nitride has become an indispensable element in industrial production of multicrystalline silicon (mc‐Si) solar cells. Microwave PECVD is a very effective method for high‐throughput deposition of silicon nitride layers with the required properties for bulk and surface passivation. In this paper an analysis is presented of the relation between deposition parameters of microwave PECVD and material properties of silicon nitride. By tuning the process conditions (substrate temperature, gas flows, working pressure) we have been able to fabricate silicon nitride layers which fulfill almost ideally the four major requirements for mc‐Si solar cells: (1) good anti‐reflection coating (refractive index tunable between 2·0 and 2·3); (2) good surface passivation on p‐type FZ wafers (Seff<30 cm/s); (3) good bulk passivation (improvement of IQE at 1000 nm by 30% after short thermal anneal); (4) long‐term stability (no observable degradation after several years of exposure to sunlight). By implementing this silicon nitride deposition in an inline production process of mc‐Si solar cells we have been able to produce cells with an efficiency of 16·5%. Finally, we established that the continuous deposition process could be maintained for at least 20 h without interruption for maintenance. On this timescale we did not observe any significant changes in layer properties or cell properties. This shows the robustness of microwave PECVD for industrial production. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This article reports on the integration of facile native oxide‐based passivation of crystalline silicon surfaces within the back amorphous‐crystalline silicon heterojunction solar cell concept. The new passivation scheme consists of 1‐nm thick native oxide and nominally 70‐nm thick PECVD silicon nitride. The low temperature passivation scheme provides uniform high quality surface passivation and low parasitic optical absorption. The interdigitated doped hydrogenated amorphous silicon layers were deposited on the rear side of the silicon wafer using the direct current saddle field PECVD technique. A systematic analysis of a series of back amorphous‐crystalline silicon heterojunction cells is carried out in order to examine the influence of the various cell parameters (interdigital gap, n‐doped region width, ratio of widths of p, and n‐doped regions) on cell performance. A photovoltaic conversion efficiency of 16.7 % is obtained for an untextured cell illuminated under AM 1.5 global spectrum (cell parameters: VOC of 641 mV, JSC of 33.7 mA‐cm − 2 and fill factor of 77.3 %). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Using a remote-plasma technique as opposed to the conventional direct-plasma technique, significant progress has been obtained at ISFH in the area of low-temperature surface passivation of p-type crystalline silicon solar cells by means of silicon nitride (SiN) films fabricated at 350–400°C in a plasma-enhanced chemical vapour deposition system. If applied to the rear surface of the low-resistivity p-type substrates, the remote-plasma SiN films provide outstanding surface recombination velocities (SRVs) as low as 4 cm s−1, which is by a clear margin the lowest value ever obtained on a low-resistivity p-Si wafer passivated by a solid film, including highest quality thermal oxides. Compared to direct-plasma SiN films or thermally grown oxides, the remote-plasma films not only provide significantly better SRVs on low-resistivity p-silicon wafers, but also an enormously improved stability against ultraviolet (UV) light. The potential of these remote-plasma silicon nitride films for silicon solar cell applications is further increased by the fact that they provide a surface passivation on phosphorus-diffused emitters which is comparable to high-quality thermal oxides. Furthermore, if combined with a thermal oxide and a caesium treatment, the films induce a UV-stable inversion-layer emitter of outstanding electronic quality. Due to the low deposition temperature and the high refraction index, these remote-plasma SiN films act as highly efficient surface-passivating antireflection coatings. Application of these films to cost-effective silicon solar cell designs presently under development at ISFH turned out to be most successful, as demonstrated by diffused p-n junction cells with efficiencies above 19%, by bifacial p-n junction cells with front and rear efficiencies above 18%, by mask-free evaporated p-n junction cells with efficiencies above 18% and by MIS inversion-layer cells with a new record efficiency of above 17%. All cells are found to be stable during a UV test corresponding to more than 4 years of glass-encapsulated outdoor operation. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Many solar cells incorporating SiNx films as a rear surface passivation scheme have not reached the same high level of cell performance as solar cells incorporating high‐temperature‐grown silicon dioxide films as a rear surface passivation. In this paper, it is shown by direct comparison of solar cells incorporating the two rear surface passivation schemes, that the performance loss is mainly due to a lower short‐circuit current while the open‐circuit voltage is equally high. With a solar cell test structure that features a separation of the rear metal contacts from the passivating SiNx films, the loss in short‐circuit current can be reduced drastically. Besides a lower short‐ circuit current, dark I–V curves of SiNx rear surface passivated solar cells exhibit distinct shoulders. The results are explained by parasitic shunting of the induced floating junction (FJ) underneath the SiNx films with the rear metal contacts. The floating junction is caused by the high density of fixed positive charges in the SiNx films. Other two‐dimensional effects arising from the injection level dependent SRV of the Si/SiNx interfaces are discussed as well, but, are found to be of minor importance. Pinholes in the SiNx films and optical effects due to a different internal rear surface reflectance can be excluded as a major cause for the performance loss of the SiNx rear surface passivated cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Rapid and potentially low‐cost process techniques are analyzed and successfully applied towards the fabrication of high‐efficiency mono‐ and multicrystalline Si solar cells. First, a novel dielectric passivation scheme (formed by stacking a plasma silicon nitride film on top of a rapid thermal oxide layer) is developed that serves as antireflection coating and reduces the surface recombination velocity (Seff) of the 1˙3 Ω‐cm p‐Si surface to approximately 10 cm/s. The essential feature of the stack passivation scheme is its ability to withstand short 700 – 850°C anneal treatments used to fire screen printed (SP) contacts, without degradation in Soeff. The stack also lowers the emitter saturation current density (Joe) of 40 and 90 Ω/□ emitters by a factor of three and 10, respectively, compared to no passivation. Next, rapid emitter formation is accomplished by diffusion under tungsten halogen lamps in both belt line and rapid thermal processing (RTP) systems (instead of in a conventional infrared furnace) . Third, a combination of SP aluminium and RTP is used to form an excellent back surface field (BSF) in 2 min to achieve an effective back surface recombination velocity (Seff) of 200 cm/s on 2˙3 Ω‐cm Si. Finally, the above individual processes are integrated to achieve: (1) >19% efficient solar cells with emitter and Al‐BSF formed by RTP and contacts formed by vacuum evaporation and photolithography, (2) 17% efficient manufacturable cells with emitter and Al‐BSF formed in a belt line furnace and contacts formed by SP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Interdigitated back contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high open circuit voltage (VOC) due to the surface passivation and heterojunction contacts, and high short circuit current density (JSC) due to all back contact design. Intrinsic amorphous silicon (a‐Si:H) buffer layer at the rear surface improve the surface passivation hence VOC and JSC, but degrade fill factor (FF) from an “S” shape JV curve. Two‐dimensional (2D) simulation using “Sentaurus device” demonstrates that the low FF is related to the valence band offset (energy barrier) at the hetero‐interface. Three approaches to the buffer layer are suggested to improve the FF: (1) reduced thickness, (2) increased conductivity, and/or (3) reduced band gap. Experimental IBC‐SHJ solar cells with reduced buffer thickness (<5 nm) and increased conductivity with low boron doping significantly improves FF, consistent with simulation. However, this has only marginal effect on efficiency since JSC and VOC also decrease due to poor surface passivation. A narrow band gap a‐Si:H buffer layer improves cell efficiency to 13.5% with unoptimized passivation quality. These results demonstrate that tailoring the hetero‐interface band structure is critical for achieving high FF. Simulations predicts that efficiences >23% are possible on planar devices with optimized pitch dimensions and achievable surface passivation, and 26% with light trapping. This work provides criterion to design IBC‐SHJ solar cell structures and optimize cell performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Traditional POCl3 diffusion is performed in large diffusion furnaces heated to ~850 C and takes an hour long. This may be replaced by an implant and subsequent 90‐s rapid thermal annealing step (in a firing furnace) for the fabrication of p‐type passivated emitter rear contacted silicon solar cells. Implantation has long been deemed a technology too expensive for fabrication of silicon solar cells, but if coupled with innovative process flows as that which is mentioned in this paper, implantation has a fighting chance. An SiOx/SiNy rear side passivated p‐type wafer is implanted at the front with phosphorus. The implantation creates an inactive amorphous layer and a region of silicon full of interstitials and vacancies. The front side is then passivated using a plasma‐enhanced chemical vapor deposited SiNxHy. The wafer is placed in a firing furnace to achieve dopant activation. The hydrogen‐rich silicon nitride releases hydrogen that is diffused into the Si, the defect rich amorphous front side is immediately passivated by the readily available hydrogen; all the while, the amorphous silicon recrystallizes and dopants become electrically active. It is shown in this paper that the combination of this particular process flow leads to an efficient Si solar cell. Cell results on 160‐µm thick, 148.25‐cm2 Cz Si wafers with the use of the proposed traditional diffusion‐free process flow are up to 18.8% with a Voc of 638 mV, Jsc of 38.5 mA/cm2, and a fill factor of 76.6%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号