首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
 由于多扫描链测试方案能够提高测试进度,更适合大规模集成电路的测试,因此提出了一种应用于多扫描链的测试数据压缩方案.该方案引入循环移位处理模式,动态调整向量,能够保留向量中无关位,增加向量的外延,从而提高向量间的相容性和反向相容性;同时,该方案还能够采用一种有效的参考向量更替技术,进一步提高向量间的相关性,减少编码位数.另外,该方案能够利用已有的移位寄存器,减少不必要的硬件开销.实验结果表明所提方案在保持多扫描链测试优势的前提下能够进一步提高测试数据压缩率,满足确定性测试和混合内建自测试.  相似文献   

2.
双游程编码的无关位填充算法   总被引:2,自引:2,他引:0  
双游程编码是集成电路测试数据压缩的一种重要方法,可分为无关位填充和游程编码压缩两个步骤.现有文献大都着重在第二步,提出了各种不同的编码压缩算法,但是对于第一步的无关位填充算法都不够重视,损失了一定的潜在压缩率.本文首先分析了无关位填充对于测试数据压缩率的重要性,并提出了一种新颖的双游程编码的无关位填充算法,可以适用于不同的编码方法,从而得到更高的测试数据压缩率.该算法可以与多种双游程编码算法结合使用,对解码器的硬件结构和芯片实现流程没有任何的影响.在ISCAS89的基准电路的实验表明,对于主流的双游程编码算法,结合该无关位填充算法后能提高了6%-9%的测试数据压缩率.  相似文献   

3.
An Efficient Test Data Compression Technique Based on Codes   总被引:1,自引:1,他引:0  
提出了一种新的测试数据压缩/解压缩的算法,称为混合游程编码,它充分考虑了测试数据的压缩率、相应硬件解码电路的开销以及总的测试时间.该算法是基于变长-变长的编码方式,即把不同游程长度的字串映射成不同长度的代码字,可以得到一个很好的压缩率.同时为了进一步提高压缩率,还提出了一种不确定位填充方法和测试向量的排序算法,在编码压缩前对测试数据进行相应的预处理.另外,混合游程编码的研究过程中充分考虑到了硬件解码电路的设计,可以使硬件开销尽可能小,并减少总的测试时间.最后,ISCAS 89 benchmark电路的实验结果证明了所提算法的有效性.  相似文献   

4.
提出了一种新的测试数据压缩/解压缩的算法,称为混合游程编码,它充分考虑了测试数据的压缩率、相应硬件解码电路的开销以及总的测试时间.该算法是基于变长-变长的编码方式,即把不同游程长度的字串映射成不同长度的代码字,可以得到一个很好的压缩率.同时为了进一步提高压缩率,还提出了一种不确定位填充方法和测试向量的排序算法,在编码压缩前对测试数据进行相应的预处理.另外,混合游程编码的研究过程中充分考虑到了硬件解码电路的设计,可以使硬件开销尽可能小,并减少总的测试时间.最后,ISCAS 89 benchmark电路的实验结果证明了所提算法的有效性.  相似文献   

5.
提出考虑测试功耗的扫描链划分新方法.首先为基于扫描设计电路的峰值测试功耗和平均功耗建模,得出测试功耗主要由内部节点的翻转引起的结论,因此考虑多条扫描链情况,从输入测试集中寻找相容测试单元,利用扫描单元的兼容性,并考虑布局信息,将其分配到不同的扫描链中共享测试输入向量,多扫描链的划分应用图论方法.在ISCAS89平台上的实验结果表明,有效降低了峰值测试功耗和平均测试功耗.  相似文献   

6.
测试数据编码压缩是一类重要、经典的测试源划分(TRP)方法。本文提出了一种广义交替码,将FDR码、交替码都看作它的特例;又扩展了两步压缩方法,将原测试集划分成多组,每组采用不同的比值进行交替编码,综合了交替码与两步编码各自的优势,弥补了FDR码,交替码对某些电路测试集压缩的缺陷,得到了较好的压缩率。实验结果表明,与同类型的编码压缩方法相比,该方案具有更高的测试数据压缩率和较好的综合测试性能。  相似文献   

7.
应用Variable-Tail编码压缩的测试资源划分方法   总被引:13,自引:6,他引:13       下载免费PDF全文
测试资源划分是降低测试成本的一种有效方法.本文提出了一种新的有效的对测试数据进行压缩的编码:Variable-Tail编码,并构建了基于该编码的测试资源划分方案.文章的理论分析和实验研究表明了采用Variable-Tail编码能取得比Golomb编码更高的压缩率,针对多种模式下的测试向量均能提供很好的压缩效果,解码器的硬件也较易实现.文章还提出了一种整合不确定位动态赋值的测试向量排序算法,该算法可以进一步提高测试压缩率.文章最后用实验数据验证了所提编码和排序算法的高效性.  相似文献   

8.
应用混合游程编码的SOC测试数据压缩方法   总被引:10,自引:1,他引:9       下载免费PDF全文
方建平  郝跃  刘红侠  李康 《电子学报》2005,33(11):1973-1977
本文提出了一种有效的基于游程编码的测试数据压缩/解压缩的算法:混合游程编码,它具有压缩率高和相应解码电路硬件开销小的突出特点.另外,由于编码算法的压缩率和测试数据中不确定位的填充策略有很大的关系,所以为了进一步提高测试压缩编码效率,本文还提出一种不确定位的迭代排序填充算法.理论分析和对部分ISCAS 89 benchmark电路的实验结果证明了混合游程编码和迭代排序填充算法的有效性.  相似文献   

9.
桑伟伟  杨军  凌明 《电子器件》2004,27(1):98-101
提出了一种基于多扫描链Multi-capture结构的扫描链优化算法,通过构造具有最小相关度的多扫描链结构,并利用Multi-capture内部响应复用为激励以侦测故障的原理,达到极大压缩测试向量长度的目的。实验结果表明,该优化算法平均优化率可以达到30%左右。  相似文献   

10.
梁华国  李鑫  陈田  王伟  易茂祥 《电子学报》2012,40(5):1030-1033
 本文提出了一种新的基于初始状态的并行折叠计数结构,并给出了建议的多扫描链的BIST方案.与国际上同类方法相比,该方案需要更少的测试数据存储容量、更短的测试应用时间,其平均测试应用时间是同类方案的0.265%,并且能很好地适用于传统的EDA设计流程.  相似文献   

11.
A simple and effective compression method is proposed for multiple‐scan testing. For a given test set, each test pattern is compressed from the view of slices. An encoding table exploiting seven types of frequently‐occurring pattern is used. Compression is then achieved by mapping slice data into codewords. The decompression logic is small and easy to implement. It is also applicable to schemes adopting a single‐scan chain. Experimental results show this method can achieve good compression effect.  相似文献   

12.
The paper proposes a new test data compression scheme for testing embedded cores with multiple scan chains. The new compression scheme allows broadcasting identical test data to several scan chains whenever the cells in the same depth are compatible for the current application test pattern. Thus, it efficiently utilizes the compatibility of the scan cells among the scan chain segments, increases test data run in broadcast mode and reduces test data volume and test application time effectively. It does not need complex compressing algorithm and costly hardware. Experimental results demonstrate the efficiency and versatility of the proposed method.  相似文献   

13.
In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed.  相似文献   

14.
We present a selective encoding method that reduces test data volume and test application time for scan testing of Intellectual Property (IP) cores. This method encodes the slices of test data that are fed to the scan chains in every clock cycle. To drive $N$ scan chains, we use only $c$ tester channels, where $c=lceillog_2(N+1)rceil+2$ . In the best case, we can achieve compression by a factor of $N/c$ using only one tester clock cycle per slice. We derive a sufficient condition on the distribution of care bits that allows us to achieve the best-case compression. We also derive a probabilistic lower bound on the compression for a given care-bit density. Unlike popular compression methods such as Embedded Deterministic Test (EDT), the proposed approach is suitable for IP cores because it does not require structural information for fault simulation, dynamic compaction, or interleaved test generation. The on-chip decoder is small, independent of the circuit under test and the test set, and it can be shared between different circuits. We present compression results for a number of industrial circuits and compare our results to other recent compression methods targeted at IP cores.   相似文献   

15.
Two-Dimensional Test Data Compression for Scan-Based Deterministic BIST   总被引:2,自引:0,他引:2  
In this paper a novel architecture for scan-based mixed mode BIST is presented. To reduce the storage requirements for the deterministic patterns it relies on a two-dimensional compression scheme, which combines the advantages of known vertical and horizontal compression techniques. To reduce both the number of patterns to be stored and the number of bits to be stored for each pattern, deterministic test cubes are encoded as seeds of an LFSR (horizontal compression), and the seeds are again compressed into seeds of a folding counter sequence (vertical compression). The proposed BIST architecture is fully compatible with standard scan design, simple and flexible, so that sharing between several logic cores is possible. Experimental results show that the proposed scheme requires less test data storage than previously published approaches providing the same flexibility and scan compatibility.  相似文献   

16.
This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB, In general, the smaller the slice distance, the better the 3-D compression performance.  相似文献   

17.
To overcome the limitation of the automatic test equipment (ATE), test data compression/decompression schemes become a more important issue of testing for a system-on-chip (SoC). In order to alleviate the limitation of previous works, a new hybrid test data compression/decompression scheme for an SoC is developed. The new scheme is based on analyzing the factors that influence test parameters: compression ratio and hardware overhead. To improve compression ratio, the proposed scheme, called the Modified Input reduction and CompRessing One block (MICRO), uses the modified input reduction, the one block compression, a novel mapping, and reordering algorithms. Unlike previous approaches using the cyclic scan register architecture, the proposed scheme is to compress original test data and to decompress the compressed test data without the cyclic scan register architecture. Therefore, the proposed scheme leads to high-compression ratio with low-hardware overhead. Experimental results on ISCAS '89 and ITC '99 benchmark circuits prove the efficiency of the new method.  相似文献   

18.
Growing test data volume and excessive power dissipation are two major issues in testing of very large scale integrated (VLSI) circuits. Most previous low power techniques cannot work well with test-data compression schemes. Even if some low power methods can be applied in a test compression environment, they cannot reduce shift power and capture power simultaneously. This paper presents a new low shift-in power scan testing scheme in linear decompressor-based test compression environment. By dividing the test cubes into two kinds of blocks: non-transitional (low toggles) and transitional (with toggles) and feeding scan chains with these blocks through a novel DFT architecture, this approach can effectively reduce the quantity of transitions while scanning-in a test pattern. A low capture and shift-out power X-filling method compatible with the scan testing scheme is also proposed. The X-filling method assigns an interdependent X-bits set at each run and achieves significant power reduction. Interestingly, in the comprehensive strategy, capture power reduction agrees with shift-out power reduction to a certain extent. Experimental results on the larger ISCAS'89 and ITC'99 benchmark circuits show that the holistic strategy can reduce test power in shift cycles and capture cycles significantly under the constraint of certain compression ratio.  相似文献   

19.
Growing test data volume and excessive testing power are both serious challenges in the testing of very large-scale integrated circuits. This article presents a scan power-aware deterministic test method based on a new linear decompressor which is composed of a traditional linear decompressor, k-input AND gates and T flip-flops. This decompression architecture can generate the low-transition deterministic test set for a circuit under test. When applying the test patterns generated by the linear decompressor, only a few transitions occur in the scan chains, and hence the switching activity during testing decreases significantly. Entire test flow compatible with the design is also presented. Experimental results on several large International Symposium on Circuits and Systems’89 and International Test Conference’99 benchmark circuits demonstrate that the proposed methodology can reduce test power significantly while providing a high compression ratio with limited hardware overhead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号