首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Small molecule based white organic light-emitting diodes were fabricated by using an alignment free mask patterning method. A phosphorescent red/green emitting layer was patterned by a metal mask without any alignment and a blue phosphorescent emitting layer was commonly deposited on the patterned red/green emitting layer. A white emission could be obtained due to separate emission of red/green and blue emitting layers. A maximum current efficiency of 30.7 cd/A and a current efficiency of 26.0 cd/A at 1000 cd/m2 were obtained with a color coordinate of (0.39, 0.45). In addition, there was little change of emission spectrum according to luminance because of balanced red/green and blue emissions.  相似文献   

2.
Using a 4,4′,4′′-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green phosphorescent organic light emitting devices by solution process. Significantly a low driving voltage of 3.0 V to reach a luminance of 1000 cd/m2 is reported in this device. The maximum current and power efficiency values of 27.2 cd/A and 17.8 lm/W with TCTA interlayer (thickness 30 nm) and 33.7 cd/A and 19.6 lm/W with 40 nm thick interlayer are demonstrated, respectively. Results reveal a way to fabricate the phosphorescent organic light emitting device using TCTA small molecule interlayer by solution process, promising for efficient and simple manufacturing.  相似文献   

3.
In this paper, we demonstrated the changes of electrical and optical characteristics of a phosphorescent organic light-emitting device (OLED) with tris(phenylpyridine)iridium Ir(ppy)3 thin layer (4 nm) slightly codoped (1%) inside the emitting layer (EML) close to the cathode side. Such a thin layer helped for electron injection and transport from the electron transporting layer into the EML, which reduced the driving voltage (0.40 V at 100 mA/cm2). Electroluminescence (EL) spectral shift at different driving voltage was observed in our blue OLED with [(4,6-di-fluoropheny)-pyridinato-N,C2′]picolinate (FIrpic) emitter, which came from the recombination zone shift. With the incorporation of thin-codoped Ir(ppy)3, such EL spectral shift was almost undetectable (color coordinate shift (0.000, 0.001) from 100 to 10,000 cd/m2), due to the compensation of Ir(ppy)3 emission at low driving voltage. Such a methodology can be applied to a white OLED which stabilized the EL spectrum and the color coordinates ((0.012, 0.002) from 100 to 10,000 cd/m2).  相似文献   

4.
In this paper, we report color stable phosphorescent white organic light-emitting diodes (OLEDs) based on a double emissive layer (EML) structure composed of blue and red/green phosphorescent units. Deep hole trapping situation of red and green dopants at the red/green EML could induce less voltage dependent white spectral characteristics by restricting the change of exciton generation zone. A wide band-gap host material, 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), was used for achieving such deep-trap generation. Fabricated phosphorescent white OLED shows a slight color coordinate change of (?0.002, +0.002) from 1000 cd/m2 to 5000 cd/m2 with power efficiency of 38.7 lm/W and current efficiency of 46.4 cd/A at 1000 cd/m2. In addition, negligible color changes were observed by delaying red dopant saturation time using optimum red dopant concentration.  相似文献   

5.
A blue organic light emitting device (OLED) with improved efficiency and good color purity is reported. The highest occupied molecular orbital (HOMO) level of the hole transport layer (HTL) and that of the emissive layer (EML) differs by 0.3 eV. This energy level mismatch confines the carriers at the HTL/EML interface. Conventional devices have only one HTL/EML interface, with a current efficiency of 2.9 cd/A. Without adding a separate hole blocking layer, incorporating multi-layers of the same HTL and EML increases this efficiency to 5.8 cd/A, with only a small increase in operating voltage yielding increased power efficiency also. But, there are an optimum number of layers, beyond which efficiency loss results. Also, including the multilayer structure simultaneously improves the blue color co-ordinates. To gain insight into the role of multilayer structures in modifying charge transport and recombination zone a simulator was developed. The simulated results could qualitatively explain the experimental observations.  相似文献   

6.
《Organic Electronics》2008,9(6):994-1001
We demonstrate a white electrophosphorescent organic light emitting device (WOLED) with a three-section emission layer (EML) where excitons are formed in the multiple emission regions. The EML consists of a stepped progression of highest occupied and lowest unoccupied molecular orbital energies of the ambipolar hosts. Analysis shows that (36 ± 6)% of the excitons form in the blue emitting region, while (64 ± 6)% form in the green emitting region at 100 mA/cm2. The doping of the red, green and blue phosphors, each in its own host, allows for efficient utilization of excitons formed in these multiple regions. Based on this architecture, the WOLED has an internal quantum efficiency close to unity. The WOLED has total external quantum and power efficiencies of ηext,t = (26 ± 1)% and ηp,t = (63 ± 3) lm/W at 12 cd/m2, decreasing to ηext,t = (23 ± 1)% and ηp,t = (37 ± 2) lm/W at 500 cd/m2. When an undoped electron transport layer is used, the peak efficiency is ηext,t = (28 ± 1)%. Due to the distributed exciton formation in the EML, the WOLED exhibits higher total efficiency than monochromatic devices employing the same red, green and blue dopant–host combinations.  相似文献   

7.
《Organic Electronics》2014,15(2):517-523
The chromaticity and colour-rendering capability of solution-processed single emission layer (EML) white organic light-emitting diodes (W-OLEDs) can be precisely tuned by manipulating the dopant compositions in the EMLs. In this work, we numerically modelled binary, ternary, and quaternary doping single EML W-OLEDs. The correlated colour temperature (CCT), colour-rendering index (CRI), and spectral designs were correlated. The simulation predicted that the quaternary doping system possesses the best chromaticity performance. The corresponding binary, ternary and quaternary doping single EML W-OLEDs were fabricated and characterised to verify the calculation. The solution-processed quaternary doping W-OLEDs were designed with CRI values up to 85, deviations from the Planckian locus (Duv) as low as +0.0009, an EQE of 13.7%, a power efficacy of 14.7 lm/W and current efficiency of up to 24.9 cd/A at 1000 cd/m2.  相似文献   

8.
A series of simple structures is investigated for realization of the highly efficient green phosphorescent organic light emitting diodes with relatively low voltage operation. All the devices were fabricated with mixed host system by using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TpPyPB) which were known to be hole and electron type host materials due to their great hole and electron mobilities [μh(TAPC): 1 × 10?2 cm2/V s and μe(TpPyPB): 7.9 × 10?3 cm2/V s] [1]. The optimized device with thin TAPC (5–10 nm) as an anode buffer layer showed relatively high current and power efficiency with low roll-off characteristic up to 10,000 cd/m2. The performances of the devices; with buffer layer were compared to those of simple devices with single layer and three layers. Very interestingly, the double layer device with TAPC buffer layer showed better current and power efficiency behavior compared to that of three layer device with both hole and electron buffer layers (TAPC, TpPyPB, respectively).  相似文献   

9.
A hybrid white organic light-emitting diode (WOLED) with an emission layer (EML) structure composed of red phosphorescent EML/green phosphorescent EML/spacer/blue fluorescent EML was demonstrated. This hybrid WOLED shows high efficiency, stable spectral emission and low efficiency roll-off at high luminance. We have attributed the significant improvement to the wide distribution of excitons and the effective control of charge carriers in EMLs by using mixed 4,4′,4″-tri(9-carbazoyl) triphenylamine (TCTA) and bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp2) as the host of phosphorescent EMLs as well as the spacer. The bipolar mixed TCTA:Bepp2, which was proved to be a charge carrier switch by regulating the distribution of charge carriers and then the exciton recombination zone, plays an important role in improving the efficiency, stabilizing the spectrum and reducing the efficiency roll-off at high luminous. The hybrid WOLED exhibits a current efficiency of 30.2 cd/A, a power efficiency of 32.0 lm/W and an external quantum efficiency of 13.4% at a luminance of 100 cd/m2, and keeps a current efficiency of 30.8 cd/A, a power efficiency of 27.1 lm/W and an external quantum efficiency of 13.7% at a 1000 cd/m2. The Commission Internationale de l’Eclairage (CIE) coordinates of (0.43, 0.43) and the color rendering index (CRI) of 89 remain nearly unchanged in the whole range of luminance.  相似文献   

10.
《Organic Electronics》2008,9(6):1076-1086
Two new Λ-shaped fluorene-based Tröger’s base (TB) analogues with aryl substitutions are successfully synthesized and their photophysical and electroluminescent properties are examined in detail. Both compounds exhibit strong fluorescence emission in dilute solutions and aggregated states. Some abnormal photophysical behaviors have been observed; that is, the amorphous films of the two TB analogues show multiple blue–green emissions similar to the emissions of some polyfluorenes and oligofluorenes, while both the dilute solutions and the polycrystalline powders of two compounds show single blue–violet emission. Furthermore, the emissions of the amorphous film are obviously red-shifted in comparison with the polycrystalline powders. Organic light emitting diodes (OLEDs) using the two compounds as non-doped emitters with device structure of ITO/NPB (30 nm)/TBFB-BP or TBFB-FB (40 nm)/TPBI (40 nm)/LiF (1 nm)/Al (80 nm) were fabricated and high brightness (22047 cd/m2 for TBFB-BP and 13434 cd/m2 for TBFB-FB), high efficiency (2.78 cd/A, 1.82 lm/W for TBFB-BP and 2.76 cd/A, 1.93 lm/W for TBFB-FB) and low turn-on voltage (4.6 V for TBFB-BP and 4.5 V for TBFB-FB) were obtained. Our studies suggest that TB analogues could be excellent light emitting materials for OLED applications.  相似文献   

11.
《Microelectronics Journal》2007,38(6-7):686-689
In this work, the electrical and optical characteristics of top-emitting organic light-emitting device (TEOLED) using metal Ag as anode with different thicknesses have been investigated. The emission peak of fabricated TEOLED is 512 nm for a full-width at half-maximum (FWHM) of 48 nm in forward direction. The TEOLED turns on at 3 V with luminance of 2.38 cd/m2 and reaches 16,300 cd/m2 at 9 V. The maximum of current efficiency is 5.2 cd/A at 7 V, corresponding to the external quantum efficiency of 1.72%.  相似文献   

12.
Efficient orange phosphorescent organic light-emitting devices based on simplified structure with maximum efficiencies of 46.5 lm/W and 51.5 cd/A were reported. One device had extremely low efficiency roll-off with efficiencies of 50.6 cd/A, 45.0 cd/A and 39.2 cd/A at 1000 cd/m2, 5000 cd/m2 and 10,000 cd/m2 respectively. The reduced efficiency roll-off was attributed to more balanced carrier injection and broader recombination zone. The designed simplified white device showed much lower efficiency roll-off than the control one based on multiple emitting layers. The efficiency of simplified white device was 40.8 cd/A at 1000 cd/m2 with Commission Internationale de I’Eclairage coordinates of (0.39, 0.46).  相似文献   

13.
Low color temperature (CT) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency low CT organic light emitting diode can be easily fabricated by spin coating a single white emission layer. The resultant white device shows an external quantum efficiency (EQE) of 22.8% (34.9 lm/W) with CT 2860 K at 100 cd/m2, while is shown 18.8% (24.5 lm/W) at 1000 cd/m2. The high efficiency may be attributed to the use of electroluminescence efficient materials and the ambipolar-transport host. Besides, proper device architecture design enables excitons to form on the host and allows effective energy transfer from host to guest or from high triplet guest to low counterparts. By decreasing the doping concentration of blue dye in the white emission layer, the device exhibited an orange emission with a CT of 2280 K. An EQE improvement was observed for the device, whose EQE was 27.4% (38.8 lm/W) at 100 cd/m2 and 20.4% (24.6 lm/W) at 1000 cd/m2.  相似文献   

14.
A high efficiency pure white phosphorescent organic light-emitting diode was developed by combining a deep blue emitting phosphorescent dopant material with red/green phosphorescent emitting materials. A simple stack structure of blue/red:green was used and tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium was used as a deep blue emitting phosphorescent dopant. A pure white emission with a color coordinate of (0.29, 0.31) and a very high current efficiency of 28 cd/A was obtained after managing the device architecture of the all phosphorescent white devices.  相似文献   

15.
In this paper, we described a new category of solution processable small molecule organic light emitting materials, the pyrene functioned diarylfluorenes: 2PE-PPF and DPE-PPF. They emit blue light in solution and green light in film, and show high thermal stability with the 5% weight loss temperature (Td) over 400 °C. The glass transition temperature (Tg) for 2PE-PPF and DPE-PPF is 102 °C and 147 °C, respectively. These molecules are interesting molecular glass and they have good film forming abilities. Smooth and uniform film could be obtained by spin-coating. This character enables them able to be used in solution processed OLEDs by spin-coating or jet-printing. Single layered device using 2PE-PPF as the active material shows a turn-on voltage of 3.2 V, brightness over 8000 cd/m2 and current efficiency up to 2.55 cd/A. Double layered device by inserting TPBI as the hole-blocking electron-transporting layer increases the maximum efficiency to 5.83 cd/A.  相似文献   

16.
In order to achieve low driving voltage, electrophosphorescent green organic light-emitting diodes (OLEDs) based on a host material with small energy gap between the lowest excited singlet state and the lowest excited triplet state (ΔEST) have been fabricated. 2-biphenyl-4,6-bis(12-phenylindolo[2,3-a] carbazole-11-yl)- 1,3,5-triazine (PIC–TRZ) with ΔEST of only 0.11 eV has been found to be bipolar and used as the host for green OLEDs based on tris(2-phenylpyridinato) iridium(III) (Ir(ppy)3). A very low onset voltage of 2.19 V is achieved in devices without p- or n-doping. Maximum current and power efficiencies are 68 cd/A and 60 lm/W, respectively, and no significant roll-off of current efficiency (58 cd/A at 1000 cd/m2 and 62 cd/A at 10,000 cd/m2) have been observed. The small roll-off is due to the improved charge balance and the wide charge recombination zone in the emissive layer.  相似文献   

17.
《Organic Electronics》2008,9(1):30-38
A multilayer organic light-emitting device (OLED) has been fabricated with a thin (0.3 nm) lithium fluoride (LiF) layer inserted inside an electron transport layer (ETL), aluminum tris(8-hydroxyquinoline) (Alq3). The LiF electron injection layer (EIL) has not been used at an Al/Alq3 interface in the device on purpose to observe properties of LiF. The electron injection-limited OLED with the LiF layer inside 50 nm Alq3 at a one forth, a half or a three forth position assures two different enhancing properties of LiF. When the LiF layer is positioned closer to the Al cathode, the injection-limited OLED shows enhanced injection by Al interdiffusion. The Al interdiffusion at least up to 12.5 nm inside Alq3 rules out the possible insulating buffer model in a small molecule bottom-emission (BE) OLED with a thin, less than one nanometer, electron injection layer (EIL). If the position is further away from the Al cathode, the Al diffusion reaches the LiF layer no longer and the device shows the electroluminescence (EL) enhancement without an enhanced injection. The suggested mechanism of LiF EL efficiency enhancer is that the thin LiF layer induces carrier trap sites and the trapped charges alters the distribution of the field inside the OLED and, consequently, gives a better recombination of the device. By substituting the Alq3 ETL region with copper phthalocyanine (CuPc), all of the electron injection from the cathode of Al/CuPc interface, the induced recombination at the Alq3 emitting layer (EML) by the LiF EL efficiency enhancer, and the operating voltage reduction from high conductive CuPc can be achieved. The enhanced property reaches 100 mA/cm2 of current density and 1000 cd/m2 of luminance at 5 V with its turn-on slightly larger than 2 V. The enhanced device is as good as our previously reported non-injection limited LiF EIL device [Yeonjin Yi, Seong Jun Kang, Kwanghee Cho, Jong Mo Koo, Kyul Han, Kyongjin Park, Myungkeun Noh, Chung Nam Whang, Kwangho Jeong, Appl. Phys. Lett. 86 (2005) 213502].  相似文献   

18.
Owing to their low cost, easy processing, and the possibility of flexible fabrication, polymer light-emitting diodes (PLEDs) are emerging as an important class of materials. Despite promising characteristics, the relatively easy ionization of the well-known low-work-function cathodes such as Ca and Ba prevents the full usage of these materials. Herein, we report the syntheses of three alcohol-soluble conjugated polymers with different conjugation lengths and electron affinities as electron injection and transport materials for PLEDs: poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-tetrafluorobenzene] (PFOH-1), poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-thiophene] (PFOH-2), and poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-benzo-thiadiazole] (PFOH-3). For comparison, devices using Al, Ca, and Al cathodes were also fabricated. The device based on the Al cathode showed lower performance with a luminescence efficiency of 0.93 cd/A and a luminance of 248 cd/m2; that based on the low-work-function metal Ca as the cathode showed a near-threefold increase in luminescence efficiency at 2.51 cd/A and brightness at 856 cd/m2 owing to greatly enhanced electron injection from the cathode; and the device employing the PFOH-3/Al cathode exhibited a luminescence efficiency of 2.35 cd/A and a brightness of 667 cd/m2 at a current density of 35 mA/cm2, which is comparable with the performance of the device with the Ca cathode.  相似文献   

19.
Three new asymmetric light emitting organic compounds were synthesized with diphenylamine or triphenylamine side groups; 10-(3,5-diphenylphenyl)-N,N-diphenylanthracen-9-amine (MADa), 4-(10-(3,5-diphenylphenyl)anthracen-9-yl)-N,N-diphenylaniline (MATa), and 4-(10-(3′,5′-diphenylbiphenyl-4-yl)anthracen-9-yl)-N,N-diphenylaniline (TATa). MATa and TATa had a PLmax at 463 nm in the blue region, and MADa had a PLmax at 498 nm. MADa and MATa had Tg values greater than 120 °C, and TATa had a Tg of 139 °C. EL devices containing the synthesized compounds were fabricated in the configuration: ITO/4,4′,4′′-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine (2-TNATA) (60 nm)/N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB) (15 nm)/MADa or MATa or TATa or 9,10-di(2′-naphthyl)anthracene (MADN) (30 nm)/8-hydroxyquinoline aluminum (Alq3) (30 nm)/LiF (1 nm)/Al (200 nm). The efficiency and color coordinate values (respectively) were 10.3 cd/A and (0.199, 0.152; bluish-green) for the MADa device, 4.67 cd/A and (0.151, 0.177) for the MATa device, and 6.07 cd/A and (0.149, 0.177) for the TATa device. The TATa device had a high external quantum efficiency (EQE) of 6.19%, and its luminance and power efficiencies and life-time were more than twice those of the MADN device.  相似文献   

20.
《Organic Electronics》2014,15(9):2068-2072
A yellowish green phosphorescent dopant derived from phenylbenzothienopyridine ligand, iridium (III) [bis(1-phenylbenzo[4,5]thieno[2,3-c]pyridinato-N,C2]picolinate. (Ir(DTNP)2pic) was synthesized and the device performances of the Ir(DTNP)2pic was studied. The Ir(DTNP)2pic dopant exhibited yellowish green emission at 548 nm and showed a high quantum efficiency of 22.4% at 1000 cd/m2 with a color coordinate of (0.43, 0.57) in yellowish green phosphorescent organic light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号