首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We consider the optimum design of pilot-symbolassisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in mediumrate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.  相似文献   

2.
Optimum detectors for pilot symbol assisted modulation (PSAM) signals in Rayleigh and Rician fading channels are derived. Conventional PSAM as used on Rayleigh fading channels is also employed on Rician fading channels. It is shown that the conventional PSAM receiver is optimal for binary phase shift keying in Rayleigh fading but suboptimal for Rician fading and suboptimal for 16-ary quadrature amplitude modulation in Rayleigh fading. The optimum PSAM signal detector uses knowledge of the specular component and also jointly processes the pilot symbols and the data symbol. The performance of the optimum detector is analyzed and compared with that of the conventional detector. It is concluded that substantial gains can be achieved by exploiting knowledge of the specular component while joint processing of the data symbol with the pilot symbols may offer small benefits.  相似文献   

3.
Enabling linear minimum-mean square error (LMMSE)-based estimation of random time-selective channels, pilot-symbol-assisted modulation (PSAM) has well-documented merits as a fading counter-measure boosting bit-error rate performance. We design average-rate optimal PSAM transmissions by maximizing a tight lower bound of the average channel capacity. Relying on a simple closed-form expression of this bound in terms of the LMMSE channel estimator variance, we obtain PSAM transmissions with optimal spacing of pilot symbols and optimal allocation of the transmit-power budget between pilot and information symbols. Equi-powered transmitted symbols, channels with special Doppler spectra, and analytical and simulation based comparisons of possible alternatives shed more light on information-theoretic aspects of PSAM-based transmissions.  相似文献   

4.
Bonello  N. Chen  S. Hanzo  L. 《Electronics letters》2009,45(10):518-519
Proposed is a novel technique, hereby referred to as pilot symbol assisted coding (PSAC), where a predetermined fraction of binary pilot symbols is interspersed with the channel-coded bits at the channel coding stage, instead of multiplexing the pilots with the data symbols at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). It is demonstrated that the PSAC succeeds in gleaning more benefits from the pilot overhead investment, than just simply the capability of channel estimation such as in the PSAM technique.  相似文献   

5.
Transmitter diversity wireless communication systems over Rayleigh fading channels using pilot symbol assisted modulation (PSAM) are studied. Unlike conventional transmitter diversity systems with PSAM that estimate the superimposed fading process, we are able to estimate each individual fading process corresponding to the multiple transmitters by using appropriately designed pilot symbol sequences. With such sequences, special coded modulation schemes can then be designed to access the diversity provided by the multiple transmitters without having to use an interleaver or expand the signal bandwidth. The code matrix notion is introduced for the coded modulation scheme, and its design criteria are also established. In addition to the reduction in receiver complexity, simulation results are compared to, and shown to be superior to, that of an intentional frequency offset system over a wide range of system parameters  相似文献   

6.
In this paper, powerful coding techniques for differential space-time modulation (DSTM) over Rayleigh flat fading channels and noncoherent detection without channel state information at the receiver are investigated. In particular, multilevel coding, bit-interleaved coded modulation, and so-called hybrid coded modulation (HCM) are devised and compared. For improved noncoherent reception multiple-symbol differential detection (MSDD) is adapted to DSTM. In order to reduce the computational effort required for MSDD, a low-complexity version of MSDD is applied. Evaluating the ergodic channel capacity for the different schemes as appropriate performance measure, HCM with simplified MSDD is shown to offer a favorable tradeoff between complexity and achievable power efficiency. Simulation results employing turbo codes in properly designed HCM schemes confirm the predictions from information theory.  相似文献   

7.
TCMP-a modulation and coding strategy for Rician fading channels   总被引:3,自引:0,他引:3  
The authors describe TCMP, a novel modulation strategy for Rician fading channels that multiplexes a time domain pilot sequence with trellis-coded data to permit coherent detection. This technique is shown to provide remarkably robust performance in the presence of fading. It is also shown that, when choosing trellis codes for fading channels, time diversity is of greater important than asymptotic coding gain. The motivation for studying this strategy is to find signaling schemes for transmitting data at a 4.8 kb/s rate over a mobile satellite channel with 5-kHz channel spacing  相似文献   

8.
Achievable rates over the discrete memoryless relay channel with partial feedback configurations are proposed. Specifically, we consider partial feedback from the receiver to the sender as well as partial feedback from the relay to the sender. These achievable rates are calculated for the general Gaussian and the Z relay channels and are shown to improve on the known one-way achievable rates  相似文献   

9.
Channel estimation in multipath environments is typically performed using the pilot-symbol-assisted modulation (PSAM) scheme. However, the traditional PSAM scheme requires the use of dedicated pilot subcarriers and therefore leads to a reduction in the bandwidth utilization. Accordingly, this paper investigates a channel-estimation approach for orthogonal frequency-division multiplexing (OFDM) systems using a superimposed training (ST) scheme, in which the pilot symbols are superimposed onto the data streams prior to transmission. By using equally spaced pilot symbols of equal power and assuming that the number of pilots is larger than the channel order, it is shown that the channel-estimation performance is independent of the number of pilots used. The optimal ratio of the pilot symbol power to the total transmission power is analyzed to maximize the lower bound of the channel capacity. Overall, the current results show that the ST-based channel estimation schemes have a slightly poorer performance than the PSAM scheme but yield higher system capacity.  相似文献   

10.
In realistic channel environments the performance of space–time coded multiple-input multiple output (MIMO) systems is significantly reduced due to non-ideal antenna placement and non-isotropic scattering. In this paper, by exploiting the spatial dimension of a MIMO channel we introduce the novel idea of linear spatial precoding (or power-loading) based on fixed and known parameters of MIMO channels to ameliorate the effects of non-ideal antenna placement on the performance of coherent (channel is known at the receiver) and non-coherent (channel is un-known at the receiver) space–time codes. Antenna spacing and antenna placement (geometry) are considered as fixed parameters of MIMO channels, which are readily known at the transmitter. With this design, the precoder is fixed for fixed antenna placement and the transmitter does not require any feedback of channel state information (partial or full) from the receiver. We also derive precoding schemes to exploit non-isotropic scattering distribution parameters of the scattering channel to improve the performance of space–time codes applied on MIMO systems. However, these schemes require the receiver to estimate the non-isotropic parameters and feed them back to the transmitter. Closed form solutions for precoding schemes are presented for systems with up to three receive antennas. A generalized method is proposed for more than three receive antennas.  相似文献   

11.
Recently proposed, pilot symbol assisted modulation (PSAM) uses a known pilot sequence to derive amplitude and phase references at the receiver. The authors present convolutional coding for such systems and derive the exact pairwise error probability and the Chernoff upper bound of it. A comparison among PSAM, coherent and differential detected coded systems indicates that, even at 5% Doppler fading rate, coded PSAM requires 3.5 dB more than the ideal coherent case but less than the differential case.<>  相似文献   

12.
Power and bandwidth efficient noncoherent transmission over frequency nonselective Ricean-fading channels is studied. We propose a low-complexity receiver structure, which is very well suited to mobile communication scenarios with time-variant and nonstationary transmission channels. Applying bit-interleaved coded modulation with standard convolutional codes, substantial gains of several decibels in power efficiency compared to conventional differential detection are achieved. To obtain the novel noncoherent reception scheme, ideas of iterative decoding with hard-decision feedback and prediction-based branch metric calculation are combined and extended. Furthermore, the incorporation of combined phase and amplitude modulation for high bandwidth efficiency is focused on. The theoretical analysis of both the convergence and the achievable performance of iterative decoding are given by evaluating the corresponding prediction-error variance and the associated cutoff rate, respectively. The results from information theory are well confirmed by simulation results presented for different channel scenarios  相似文献   

13.
We introduce an iterative joint channel and data estimation receiver that exploits both the power of pilot-symbol assisted modulation (PSAM) and turbo coding for fading channels. The key innovation is a low-complexity soft channel estimator which divides a processing block into overlapped cells and performs maximum a posteriori (MAP) sequence estimation and MMSE filtering based on the received signal and extrinsic information delivered by the soft channel decoder. Simulation results show that for turbo-coded PSAM systems under time-variant fading the proposed receiver offers significant performance gains over a non-iterative receiver and two other cancellation schemes  相似文献   

14.
A new suboptimal demodulator based on iterative decision feedback demodulation (DFD), and a singular value decomposition (SVD) for estimation of unitary matrices, is introduced. Noncoherent communication over the Rayleigh flat-fading channel with multiple transmit and receive antennas, where no channel state information (CSI) is available at the receiver is investigated. With four transmit antennas, codes achieving bit-error rate (BER) lower than 10/sup -4/ at bit energy over the noise spectral density ratio (E/sub b//N/sub o/) of -0.25 dB up to 3.5 dB, with coding rates of 1.6875 to 5.06 bits per channel use were found. The performance is compared to the mutual information upper bound of the capacity attaining isotropically random (IR) unitary transmit matrices. The codes achieve BER lower than 10/sup -4/ at E/sub b//N/sub o/ of 3.2 dB to 5.8 dB from this bound. System performance including the iterative DFD algorithm is compared to the one using Euclidean distance, as a reliability measure for demodulation . The DFD system presents a performance gain of up to 1.5 dB. Uncoded systems doing iterative DFD demodulation and idealized pilot sequence assisted modulation (PSAM) detection are compared. Iterative DFD introduces a gain of more than 1.2 dB. The coded system comprises a serial concatenation of turbo code and a unitary matrix differential modulation code. The receiver employs the high-performance coupled iterative decoding of the turbo code and the modulation code. Information-theoretic arguments are harnessed to form guidelines for code design and to evaluate performance of the iterative decoder.  相似文献   

15.
In this letter, a performance analysis of a dualbranch switched diversity system operating on statistically independent and identically distributed Nakagami-m flat-fading channels is presented. An adaptive coded modulation (ACM) scheme is employed to increase the spectral efficiency of the system. The ACM scheme consists of a set of multidimensional trellis codes originally designed for additive white Gaussian noise channels, where the codes are based on quadrature amplitude modulation (QAM) signal constellations of varying size. The performance is evaluated by assuming perfect channel knowledge at both transmitter and receiver and instantaneous feedback of channel state information, conveyed from the receiver to the transmitter on an error-free feedback channel. The optimal switching threshold of the switched diversity combiner, maximizing the average spectral efficiency, is identified for spatially uncorrelated antenna branches.  相似文献   

16.
The performance analysis of space-time trellis codes over rapid nonselective Rayleigh fading channels with imperfect channel state information is considered. A pilot-symbol-assisted-modulation scheme is used for channel estimation. The parameters used in this scheme, i.e., pilot spacing and Wiener filter length are chosen in a tradeoff between estimation accuracy, transmission rate/pilot overhead, and receiver complexity. A simple maximum likelihood receiver for M-ary phase shift keying modulation is derived. An exact closed-form pairwise error probability (PEP) expression and explicit PEP bounds are presented. It is shown that the performance loss caused by channel estimation errors increases mainly with the channel fade rate.  相似文献   

17.
In this paper, we investigate a new digital communication system based on Walsh-Hadamard codes. The modulator maps a uniformly distributed binary source to a set of symbols with a Gaussian-like distribution. These symbols are then mapped to a 2-D constellation in such a way that performance is improved when transmission occurs over Rayleigh fading channels. We assess the performance of these modulation schemes when the channel is of the nonfrequency-selective Rayleigh fading plus white Gaussian noise type and compare the results to conventional quadrature-amplitude modulation (QAM) schemes with comparable spectral efficiencies. The proposed system provides excellent robustness to fading without the use of common diversity schemes employed in M-ary signaling systems to improve bit-error-rate (BER) performance in such environments.  相似文献   

18.
A new joint signal detection and channel parameter estimation scheme is proposed for multiple subcarrier signaling with pilot symbol-assisted modulation (PSAM) schemes. The proposed scheme estimates a pair of parameters associated with the generation process of the fading frequency selectivity, which is common to all the subcarriers. This parameter estimation can effectively extract information regarding the fading frequency selectivity through the pilot symbols received not only by the subcarrier of interest, but by other ones as well. The fading complex envelope with each subcarrier is derived from the estimates of the parameter pair. With the proposed scheme, performances are evaluated through simulations and are compared with the performance of a subcarrier-by-subcarrier detection scheme  相似文献   

19.
We present a coherent detection technique for continuous phase modulation (CPM) operating in the Rayleigh flat fading channel. The technique is based on the idea of inserting periodically data dependent pilot symbols that force the CPM signal to pass through known phase states. This transmission format enables the receiver to extract from the received signal the channel fading gains at regularly spaced instants. When coupled with proper channel estimation filters, very accurate channel state information (CSI) can be estimated at the receiver for fading compensation. Moreover, the accuracy of the CSI can be further refined by adopting a multiple-pass decoding approach. The paper discusses (a) the pilot symbol encoding technique required to force a M-level CPM scheme with a modulation index of p/M, p is an integer, to return periodically to a set of known phase states, (b) the optimal channel estimation filters, (c) a trellis-based precoding technique that can reduce the bit error rate in M-level CPM systems by close to 50%, and (d) a multiple-pass channel estimator/demodulator. Analytical and simulation results are presented for minimum shift keying (MSK), Gaussian MSK, and four-level continuous phase frequency shift keying with a modulation index of 1/4. It is observed that our pilot symbol-assisted CPM schemes exhibit no irreducible error floor even at a channel fade rate of three percent the symbol rate. The implicit phase coding in CPM and the accurate CSI provided by the pilot symbols lead to a diversity effect in the bit error rate curves of these modulation schemes  相似文献   

20.
The throughput performance of incremental redundancy (INR) schemes, based on short constraint length convolutional codes, is evaluated for the block-fading Gaussian collision channel. Results based on simulations and union bound computations are compared to estimates of the achievable throughput performance with random binary and Gaussian coding in the limit of large block lengths, obtained through information outage considerations. For low channel loads, it is observed that INR schemes with binary convolutional codes and limited block length may provide throughput close to the achievable performance for binary random coding. However, for these low loads, compared to binary random coding, Gaussian random coding may provide significantly better throughput performance, which prompts the use of larger modulation constellations. For high channel loads, a relatively large gap in throughput performance between binary convolutional codes and binary random codes indicates a potential for extensive performance improvement by alternative coding strategies. Only small improvements of the throughput have been observed by increasing the complexity through increased state convolutional coding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号