首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
具有能量和位置意识基于ACO的WSN路由算法   总被引:4,自引:1,他引:3       下载免费PDF全文
王小明  安小明 《电子学报》2010,38(8):1763-1769
通过融合传感器节点的剩余能量和地理位置信息,设计一种具有传感器节点能量和地理位置意识的基于蚁群优化方法的无线传感器网络路由算法(ELACO);针对路由空洞现象,提出一种路由回退机制,提高了路由搜索成功率.仿真结果表明,ELACO算法具有很高的路由查寻成功率,能够更好地均衡传感器节点能量消耗,从而延长网络使用寿命.  相似文献   

2.
《无线电工程》2017,(2):15-19
无线传感器网络的拓扑往往由于节点死亡而发生变化。网络拓扑的重新构建加速了剩余传感器节点的死亡,缩短了网络的生存时间。针对无线传感器网络对网络生存时间的苛刻要求,提出了一种基于能量感知的最小跳数路由算法。建立路由时,该算法综合考虑了节点剩余能量和该节点潜在的转发能力。仿真结果显示,该算法在生存时间、存活节点数和吞吐量方面的性能要远优于LEACH算法和HEED算法。  相似文献   

3.
传感器网络节点是能量受限的节点,节点的能耗以及路由选择是影响传感器网络鲁棒性的重要因素之一。本文提出一种基于能耗预测来确定路由选择的方法,使得剩余能量较低、预测的传输能力较差的节点避开路由传输,避免传输失败引起的网络瘫痪,增强无线传感器网络的鲁棒性。  相似文献   

4.
在无线传感器网络中,基于分簇的路由协议对提高网络的寿命有着重要作用,LEACH是一种应用比较广泛的层次路由协议。本文提出一种新的基于最优分簇的无线传感器网络分簇路由(LEACH-O)算法,在簇的形成过程考虑到节点的集中程度和节点的剩余能量,从而减少传感器节点的能量消耗,优化资源利用率。仿真实表明,与传统的LEACH算法相比,该算法配传感器节点间数据传输提供了高效路由,从而延长网络的生命周期。  相似文献   

5.
针对无线传感器网络节点能耗不均匀,容易形成网络分区的问题,提出了一种基于博弈论的无线传感网络路由选择策略,建立传感器节点之间以剩余能量为效用的博弈模型,求解并确定节点剩余能量最优的路由。仿真结果表明,所提出的路由选择策略可以有效地最大化节点的剩余能量,同时当该模型处于纳什均衡解时,每条路径的能耗处于均衡状态,有效地利用了传感器节点的能量资源,避免了网络能量的空洞,延长了网络的生命周期。  相似文献   

6.
异构传感器网络是一种能量有限且分布不均衡的网络,负载均衡和能量有效是此网络路由算法的一个挑战。现提出的自组织成簇算法能够有效增加传感器网络的稳定周期,算法基于传感器节点的剩余能量和通讯能耗选择适合的簇头节点。与经典的成簇算法LEACH和SET比较,本算法能够更好实现负载均衡,并极大地提高传感器网络的稳定周期。  相似文献   

7.
组播路由算法(Energy-Balanced Multicast Routing,EBMR)把无线传感器网络节点的剩余能量作为建立组播路由的重要因子,在不引入过长路径的同时优先选择剩余能量高的节点作为组播数据转发节点,构建组播能量平衡树(EB-Tree),从网络能量均衡消耗的角度来延长了无线传感器网络的生存时间.针对EBMR算法路由开销较大的问题,提出了k跳受限泛洪的能量平衡组播路由算法k-EBMR,控制组播路由报文在k跳范围内传播,并且研究了影响算法性能的关键因子的选取.仿真实验表明,与EBMR算法相比,k-EBMR算法较大程度上降低了路由控制报文的传输,提高了节点能量有效使用性,进一步延长了网络生存时间.  相似文献   

8.
无线传感器网络(WSN)作为物联网中非常重要的一个环节,其网络层协议负责路由发现和维护,网络层路由协议的好坏直接影响到整个网络的性能。本文基于传感器网络的剩余能量以及簇头节点能量的变化,针对经典的LEACH协议进行改进,提出新的簇头选择算法,通过仿真,结果表明本文提出的改进能够达到优化网络性能的目的。  相似文献   

9.
针对传统的最小跳路由无线传感器网络(WSN)在数据汇聚上较高的能量开销问题,提出了一种基于无人机(UAV)数据收集的动态分簇算法,其主要思想是利用节点剩余能量来确定那些节点可以当选簇首,同时利用节点坐标位置和设定地分簇半径来划分簇的大小。该算法的优势是能最大程度地均衡每个传感器节点的能量,使整体的节点剩余的能量维持在同一水平。为了提高数据收集的效率,采用蚁群算法规划了无人机数据收集的最短路径。仿真结果表明,与相同的分簇算法下传统的最小跳路由无线传感器网络相比,所提出的基于无人机的无线传感器网络(UAV-WSN)在能量利用率和生命周期方面分别提升了15%和25%,并且以上两种网络的能量利用率高达70%。  相似文献   

10.
为解决智慧园区中无线传感器网络(WSN)的能耗不均衡问题,构建了路由代价函数,并提出了一种新的能耗均衡路由算法.该算法结合智慧园区中无线传感器网络的特点,综合考虑节点地理位置和剩余能量来构建路由代价函数.传感器节点通过选择其邻居节点中路由代价最小的节点进行数据转发.仿真结果表明,该算法可以有效节约网络能耗,同时延长了网络的生命周期.  相似文献   

11.
Reducing the energy consumption of network nodes is one of the most important problems for routing in wireless sensor networks because of the battery limitation in each sensor. This paper presents a new ant colony optimization based routing algorithm that uses special parameters in its competency function for reducing energy consumption of network nodes. In this new proposed algorithm called life time aware routing algorithm for wireless sensor networks (LTAWSN), a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. Finally, with the results of the multiple simulations we were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.  相似文献   

12.
In studies of wireless sensor networks (WSNs), routing protocols in network layer is an important topic. To date, many routing algorithms of WSNs have been developed such as relative direction-based sensor routing (RDSR). The WSNs in such algorithm are divided into many sectors for routing. RDSR could simply reduce the number of routes as compared to the convention routing algorithm, but it has routing loop problem. In this paper, a less complex, more efficient routing algorithm named as relative identification and direction-based sensor routing (RIDSR) algorithm is proposed. RIDSR makes sensor nodes establish more reliable and energy-efficient routing path for data transmission. This algorithm not only solves the routing loop problem within the RDSR algorithm but also facilitates the direct selection of a shorter distance for routing by the sensor node. Furthermore, it saves energy and extends the lifetime of the sensor nodes. We also propose a new energy-efficient algorithm named as enhanced relative identification and direction-based sensor routing (ERIDSR) algorithm. ERISDR combines triangle routing algorithm with RIDSR. Triangle routing algorithm exploits a simple triangle rule to determine a sensor node that can save more energy while relaying data between the transmitter and the receiver. This algorithm could effectively economize the use of energy in near-sensor nodes to further extend the lifetime of the sensor nodes. Simulation results show that ERIDSR get better performance than RDSR, and RIDSR algorithms. In addition, ERIDSR algorithm could save the total energy in near-sensor nodes more effectively.  相似文献   

13.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

14.
郭杰  姚彦鑫 《电讯技术》2017,57(8):861-968
在能量采集型无线传感器网络中,虽然有能量吸收,但是因能量依然非常珍贵,如何优化路由协议,提高能量利用率,延长网络寿命仍然是值得研究的问题.为求解高能效的路由,提出了一种采用遗传算法的高能效路由算法,建立考虑节点的吸收能量、剩余能量、消耗能量和浪费能量的适应函数,用遗传算法寻找全局最优路径.将该适应函数与3种其他适应函数作对比,其他3种适应函数分别为只考虑路径能耗最小的适应函数,考虑路径能耗与路径上节点的吸收能量、剩余能量的适应函数以及考虑路径能耗与网络中所有节点的浪费能量的适应函数.采用遗传算法解出4种路由,通过仿真分析可知,所提出的路由算法能量利用效率最高.  相似文献   

15.
Considering severe resources constraints and security threat hierarchical routing protocol algorithm. The proposed routing of wireless sensor networks (WSN), the article proposed a novel protocol algorithm can adopt suitable routing technology for the nodes according to the distance of nodes to the base station, density of nodes distribution, and residual energy of nodes. Comparing the proposed routing protocol algorithm with simple direction diffusion routing technology, cluster-based routing mechanisms, and simple hierarchical routing protocol algorithm through comprehensive analysis and simulation in terms of the energy usage, packet latency, and security in the presence of node protocol algorithm is more efficient for wireless sensor networks. compromise attacks, the results show that the proposed routing  相似文献   

16.
Current routing protocols in wireless sensor and actor networks (WSANs) shows a lack of unification for different traffic patterns because the communication for sensor to actor and that for actor to actor are designed separately. Such a design poses a challenge for interoperability between sensors and actors. With the presence of rich-resource actor nodes, we argue that to improve network lifetime, the problem transforms from reducing overall network energy consumption to reducing energy consumption of constrained sensor nodes. To reduce energy consumption of sensor nodes, especially in challenging environments with coverage holes/obstacles, we propose that actor nodes should share forwarding tasks with sensor nodes. To enable such a feature, efficient interoperability between sensors and actors is required, and thus a unified routing protocol for both sensors and actors is needed. This paper explores capabilities of directional transmission with smart antennas and rich-resource actors to design a novel unified actor-oriented directional anycast routing protocol (ADA) which supports arbitrary traffic in WSANs. The proposed routing protocol exploits actors as main routing anchors as much as possible because they have better energy and computing power compared to constraint sensor nodes. In addition, a directional anycast routing approach is also proposed to further reduce total delay and energy consumption of overall network. Through extensive experiments, we show that ADA outperforms state-of-the-art protocols in terms of packet delivery latency, network lifetime, and packet reliability. In addition, by offer fault tolerant features, ADA also performs well in challenging environments where coverage holes and obstacles are of concerns.  相似文献   

17.
Wireless sensor and actuator networks are composed of sensor and actuator nodes interconnected via wireless links. The actuators are responsible for taking prompt decisions and react accordingly to the data gathered by sensor nodes. In order to ensure efficient actions in such networks, we propose a new routing protocol that provides QoS in terms of delay and energy consumption. The network is organized in clusters supervised by CHs (Cluster-Heads), elected according to important metrics, namely the energy capability, the riches of connectivity, which is used to select the CH with high node density, and the accessibility degree regarding all the actuators. The latter metric is the distance in number of hops of sensor nodes relative to the actuator nodes. This metric enhances more the network reliability by reducing the communication delay when alerting the actuator nodes, and hence, reducing the energy consumption. To reach efficiently the actuator nodes, we design a delay and energy sensitive routing protocol based on-demand routing approach. Our protocol incurs less delay and is energy efficient. We perform an evaluation of our approach through simulations. The obtained results show out performance of our approach while providing effective gain in terms of communication delay and energy consumption.  相似文献   

18.
Wireless sensor networks consist of low cost sensor nodes which have limited power supplies, memory capacity, processing capability and transmission rate. Sensor nodes gather information from the environment and send the collected information to base station with help of a routing cooperation. Because of limited resources in Wireless Sensor Networks, fulfilling these routing operations is a major problem. Routing protocols are used to perform these operations. The most important thing by considering while these protocols are designed is energy efficiency. Because wireless sensor networks are widely used in intelligent systems, the energy efficiency of these networks is very important in IoT. Researchers have proposed several hierarchical routing protocols such as LEACH, PEGASIS, TEEN and APTEEN. In this study, an energy efficient routing protocol is developed which is more efficient than currently avaliable routing protocols. The developed protocol involves mapping of the network, sleep–wake/load balancing, data merge processes. The proposed protocol gives better results than other protocols in number of surviving nodes and amount of energy consumed criterias.  相似文献   

19.
For the energy limited wireless sensor networks, the critical problem is how to achieve the energy efficiency. Many attackers can consume the limited network energy, by the method of capturing some legal nodes then control them to start DoS and flooding attack, which is difficult to be detected by only the classic cryptography based techniques with common routing protocols in wireless sensor networks (WSNs). We argue that under the condition of attacking, existing routing schemes are low energy-efficient and vulnerable to inside attack due to their deterministic nature. To avoid the energy consumption caused by the inside attack initiated by the malicious nodes, this paper proposes a novel energy efficiency routing with node compromised resistance (EENC) based on Ant Colony Optimization. Under our design, each node computes the trust value of its 1-hop neighbors based on their multiple behavior attributes evaluation and builds a trust management by the trust value. By this way, sensor nodes act as router to achieve dynamic and adaptive routing, where the node can select much energy efficiency and faithful forwarding node from its neighbors according to their remaining energy and trust values in the next process of data collection. Simulation results indicate that the established routing can bypass most compromised nodes in the transmission path and EENC has high performance in energy efficiency, which can prolong the network lifetime.  相似文献   

20.
In wireless sensor networks, sensor nodes are deployed to collect data, perform calculations, and forward information to either other nodes or sink nodes. Recently, geographic routing has become extremely popular because it only requires the locations of sensor nodes and is very efficient. However, the local minimum phenomenon, which hinders greedy forwarding, is a major problem in geographic routing. This phenomenon is attributed to an area called a hole that lacks active sensors, which either prevents the packet from being forwarded to a destination node or produces a long detour path. In order to solve the hole problem, mechanisms to detect holes and determine landmark nodes have been proposed. Based on the proposed mechanisms, landmark-based routing was developed in which the source node first sends a packet to the landmark node, and the landmark node then sends the packet to the destination. However, this approach often creates a constant node sequence, causing nodes that perform routing tasks to quickly run out of energy, thus producing larger holes. In this paper, a new approach is proposed in which two virtual ellipses are created with the source, landmark, and destination nodes. Then guide the forwarding along the virtual ellipses. Furthermore, a recursive algorithm is designed to ensure a shortcut even if there are multiple holes or a hole has multiple landmarks. Thus, the proposed approach improves both geographic routing and energy efficiency routing. Simulation experiments show that the proposed approach increases the battery life of sensor nodes, lowers the end-to-end delay, and generates a short path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号