首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops an improved analysis of ATM switching architectures adopting a replicated banyan interconnection network provided with dedicated input and output queues, one per switch inlet and outlet. Two different plane selection policies are studied, random choice and alternate sharing, and two different operation modes are considered for the interaction between input and output queues, backpressure and output queue loss. These different internal operations are ranked in terms of traffic performance and the problem of optimal allocation of a given buffer budget between input and output queues is addressed. The analysis, which assumes that the network is loaded by uniform traffic, always provides conservative results whereas known models are less accurate and give optimistic traffic results. Packet delay and loss probability performance is evaluated for the ATM switch and its accuracy is assessed using computer simulation also in comparison with results given by previous models.  相似文献   

2.
Multistage interconnection networks (MINs) have long been studied for use in switching networks. Since they have a unique path between source and destination and the intermediate nodes of the paths are shared, internal blocking can cause very poor throughput. This paper proposes a high throughput ATM switch consisting of an Omega network with a new form of input queues called bypass queues. We also improve the switch throughput by partitioning the Input buffers into disjoint buffer sets and multiplexing several sets of nonblocking cells within a time slot, assuming that the routing switch operates only a couple of times faster than the transmission rate. A neural network model is presented as a controller for cell scheduling and multiplexing in the switch. Our simulation results under uniform traffic show that the proposed approach achieves almost 100% of potential switch throughput  相似文献   

3.
The design of a copy network is presented for use in an ATM (asynchronous transfer mode) switch supporting BISDN (broadband integrated services digital network) traffic. Inherent traffic characteristics of BISDN services require ATM switches to handle bursty traffic with multicast connections. In typical ATM switch designs a copy network is used to replicate multicast cells before being forwarded to a point-to-point routeing network. In such designs, a single multicast cell enters the switch and is replicated once for each multicast connection. Each copy is forwarded to the routeing network with a unique destination address and is routed to the appropriate output port. Non-blocking copy networks permit multiple cells to be multicasted at once, up to the number of outputs of the copy network. Another critical feature of ATM switch design is the location of buffers for the temporary storage of transmitted cells. Buffering is required when multiple cells require a common switch resource for transmission. Typically, one cell is granted the resource and is transmitted while the remaining cells are buffered. Current switch designs associate discrete buffers with individual switch resources. Discrete buffering is not efficient for bursty traffic as traffic bursts can overflow individual switch buffers and result in dropped cells, while other buffers are under-used. A new non-blocking copy network is presented in this paper with a shared-memory input buffer. Blocked cells from any switch input are stored in a single shared input buffer. The copy network consists of three banyan networks and shared-memory queues. The design is scalable for large numbers of inputs due to low hardware complexity, O (N log2 N), and distributed operation and control. It is shown in a simulation study that a switch incorporating the shared-memory copy network has increased throughput and lower buffer requirements to maintain low packet loss probability when compared to a switch with a discrete buffer copy network.  相似文献   

4.
A switch model for ATM networks is analyzed. Its interconnection network is internally nonblocking and is provided with dedicated input and output queues, one per switch inlet and one per switch outlet. The switch operates with an internal speed-up: more than one packet per slot can be transferred from the head-of-line positions of the input queues to each output queue by the interconnection network. Two different operation modes are considered for the interaction between input and output queues: backpressure mode and queue loss mode. The analytical model developed for the evaluation of the switch performance under random traffic assumes an infinite size for the switch, arbitrary values for input and output queue size, as well as for the speed-up factor. Switch throughput, packet delay and loss performance are evaluated and the analytical model accuracy is assessed using computer simulation results  相似文献   

5.
陈理荣 《通信学报》1996,17(2):53-61
本文分析快速分组交换中分组流的概率特性与输出排队。在输入分组流为复合泊松流的假设之下,论证了复合泊松流在分组交换过程中的叠加性、分解性、泊松性、马尔柯夫性、输出与输入的不变性等。然后,将输出分组流转换为连续时间的马尔柯夫链,分析了输出分组流的概率特性,并得到了输出排队长分布和充满缓冲器的概率。  相似文献   

6.
We introduce a new approach to ATM switching. We propose an ATM switch architecture which uses only a single shift-register-type buffering element to store and queue cells, and within the same (physical) queue, switches the cells by organizing them in logical queues destined for different output lines. The buffer is also a sequencer which allows flexible ordering of the cells in each logical queue to achieve any appropriate scheduling algorithm. This switch is proposed for use as the building block of large-stale multistage ATM switches because of low hardware complexity and flexibility in providing (per-VC) scheduling among the cells. The switch can also be used as scheduler/controller for RAM-based switches. The single-queue switch implements output queueing and performs full buffer sharing. The hardware complexity is low. The number of input and output lines can vary independently without affecting the switch core. The size of the buffering space can be increased simply by cascading the buffering elements  相似文献   

7.
We study a multistage ATM switch in which shared-memory switching elements are arranged in a banyan topology. By “shared-memory,” we mean that each switching element uses output queueing and shares its local cell buffer memory among all its output ports. We apply a buffer management technique called delayed pushout that was originally designed for multistage ATM switches with hierarchical topologies. Delayed pushout combines a pushout mechanism, for sharing memory efficiently among queues within the same switching element, and a backpressure mechanism, for sharing memory across switch stages. The backpressure component has a threshold to restrict the amount of sharing between stages. A synergy emerges when pushout, backpressure, and this threshold are all employed together. Using a computer simulation of the switch under bursty traffic, we study delayed pushout as well as several simpler pushout and backpressure schemes under a variety of traffic conditions. Of the five schemes we simulate, delayed pushout is the only one that performs well under all load conditions  相似文献   

8.
This paper proposes a high-speed ATM switch architecture for handling cell rates of several Gb/s in a broadband communication switching system or cross-connect system. The proposed switch architecture, named the high-speed-retry banyan switch, employs a bufferless banyan network between input and output buffers; a cell is repeatedly transmitted from an input buffer until it can be successfully transmitted to the desired output buffer. A simple cell-retransmission algorithm, is employed as is a ring-arbitration algorithm for cell conflict. They are suitable for FIFO type buffers and bufferless highspeed devices. Good traffic characteristics which are independent of switch size are achieved for an internal speed ratio of only four times the input line speed. A prototype system with the internal speed of 1·2 Gb/s is constructed in order to confirm the basic operation of the high-speed-retry banyan switch. The prototype system, even in its present state, could be used to realize a giga-bit-rate BISDN switching system.  相似文献   

9.
Lee  H.C. Kyung  C.M. 《Electronics letters》1996,32(25):2301-2302
A highly regular switching network consisting of several switching stages for output buffering is proposed. Each switching element performs 3×3 switching and has a tail-spared buffer for each input port. According to the performance evaluation of the proposed switching network based on computer simulation, a packet loss ratio of 10-8 was obtained for a 1024×1024 switching network consisting of 15 stages with the Bernoulli traffic source when the size of tail-spared buffer is 8 and the input traffic load is 0.9  相似文献   

10.
A new class of switching architectures for broadband packet networks, called shuffleout, is described and analyzed in the paper. Shuffleout is basically an output-queued architecture with a multistage interconnection network built out of unbuffered b×2b switching elements. Its structure is such that the number of cells that can be concurrently switched from the inlets to each output queue equals the number of stages in the interconnection network. The switching element operates the cell self-routing adopting a shortest path algorithm which, in case of conflict for interstage links, is coupled with deflection routing. The paper presents the basic shuffleout architecture, called open-loop shuffleout, in which the cells that cross the whole interconnection network without entering the addressed output queues are lost. The key target of the proposed architecture is coupling the implementation feasibility of a self-routing switch with the desirable traffic performance typical of output queueing  相似文献   

11.
Son  J.W. Lee  H.T. Oh  Y.Y. Lee  J.Y. Lee  S.B. 《Electronics letters》1997,33(14):1192-1193
A switch architecture is proposed for alleviating the HOL blocking by employing even/odd dual FIFO queues at each input and even/odd dual switching planes dedicated to each even/odd queue. Under random traffic, it gives 76.4% throughput without output expansion and 100% with output expansion r=2, with the same amount of crosspoints as for the ordinary output expansion scheme  相似文献   

12.
The nonuniform traffic performance on a nonblocking space division packet switch is studied. When an output link is simultaneously contended by multiple input packets, only one can succeed, and the rest will be buffered in the queues associated with each input link. given the condition that the traffic on each output is not dominated by individual inputs, this study indicates that the output contention involved by packets at the head of input queues can be viewed as an independent phase-type process for a sufficiently large size of the switch. Therefore, each input queue can be modeled by an independent Geom/PH/1 queueing process. Once the relative input traffic intensities and their output address assignment functions are defined, a general formulation can be developed for the maximum throughput of the switch in saturation. The result indicates under what condition the input queue will saturate. A general solution technique for the evaluation of the queue length distribution is proposed. The numerical study based on this analysis agrees well with simulation results  相似文献   

13.
Shuffleout is a blocking multistage asynchronous transfer mode (ATM) switch using shortest path routing with deflection, in which output queues are connected to all the stages. This paper describes a model for the performance evaluation of the shuffleout switch under arbitrary nonuniform traffic patterns. The analytical model that has been developed computes the load distribution on each interstage link by properly taking into account the switch inlet on which the packet has been received and the switch outlet the packet is addressing. Such a model allows the computation not only of the average load per stage but also its distribution over the different links belonging to the interstage pattern for each switch input/output pair. Different classes of nonuniform traffic patterns have been identified and for each of them the traffic performance of the switch is evaluated by thus emphasizing the evaluation of the network unfairness  相似文献   

14.
The Tera ATM LAN project at Carnegie Mellon University addresses the interconnection of hundreds of workstations in the Electrical and Computer Engineering Department via an ATM-based network. The Tera network architecture consists of switched Ethernet clusters that are interconnected using an ATM network. This paper presents the Tera network architecture, including an Ethernet/ATM network interface, the Tera ATM switch, and its performance analysis. The Tera switch architecture for asynchronous transfer mode (ATM) local area networks (LAN's) incorporates a scalable nonblocking switching element with hybrid queueing discipline. The hybrid queueing strategy includes a global first-in first-out (FIFO) queue that is shared by all switch inputs and dedicated output queues with small speedup. Due to hybrid queueing, switch performance is comparable to output queueing switches. The shared input queue design is scalable since it is based on a Banyan network and N FIFO memories. The Tera switch incorporates an optimal throughput multicast stage that is also based on a Banyan network. Switch performance is evaluated using queueing analysis and simulation under various traffic patterns  相似文献   

15.
Specific queueing models are derived in order to size the buffers of ATM switching elements in the cases of ATM or STM multiplexed traffic. Buffering is performed either at the outputs or in a central memory for ATM multiplexed traffic; for STM multiplexed traffic, buffers can also be provided at the inputs. The buffer size is chosen in order to ensure a loss probability in the switch smaller than 10?10. It is shown that the buffer size per output in the case of central queueing is smaller than the buffer size in case of output queueing for both ATM and STM multiplexed traffics. Moreover, for STM multiplexed traffic, buffer sizes are identical for input and output queueing. Lastly, it is pointed out that buffers used for STM multiplexed traffic should be 4 to 20 times larger than the corresponding buffers for ATM multiplexed traffic.  相似文献   

16.
The performance analysis of an input access scheme in a high-speed packet switch for broadband ISDN is presented. In this switch, each input port maintains a separate queue for each of the outputs, thus n 2 input queues in an (n×n) switch. Using synchronous operation, at most one packet per input and output will be transferred in any slot. We derive lower and upper bounds for the throughput which show close to optimal performance. The bounds are very tight and approach to unity for switch sizes on the order of a hundred under any traffic load, which is a significant result by itself. Then the mean packet delay is derived and its variance is bounded. A neural network implementation of this input access scheme is given. The energy function of the network, its optimized parameters and the connection matrix are determined. Simulation results of the neural network fall between the theoretical throughput bounds  相似文献   

17.
While static open loop rate controls may be adequate for handling continuous bit rate (CBR) traffic, relatively smooth data traffic, and relatively low speed bursty data traffic over broadband integrated networks, high speed bursty data sources need more dynamic controls. Burst level resource allocation is one such dynamic control. Potential benefits and other issues for burst level resource parameter negotiations for bursty data traffic over high speed wide area packet networks have been discussed earlier.1–6 A detailed analysis of an adaptive buffer/window negotiation scheme for long file transfers using these concepts is presented in Reference 1. In this paper we discuss two burst level buffer/window negotiation schemes for short intermittent file transfers, focusing on the specific needs of such traffic streams. We develop closed network of queues models to reflect the behaviour of the proposed schemes. These models, while being simple, capture essential details of the control schemes. Under fairly general assumptions, the resulting network of queues is of product form and can be analysed using the mean value analysis. We use such an analysis to compare the proposed schemes and to determine appropriate sizes of trunk buffers to achieve the desired balance between bandwidth utilization and file transfer delay. The effects of other parameters on the performance of these schemes as well as on the buffer sizing rules are also discussed. Burst level (in-call) parameter negotiation may be carried out by the end system with the network elements or by an interface system (access controller) with the broadband network elements. We discuss implications of this location as well as the needed protocol features. Finally, the service discrimination capabilities desired at the trunk controllers in switching nodes are briefly discussed.  相似文献   

18.
We study a multistage hierarchical asynchronous transfer mode (ATM) switch in which each switching element has its own local cell buffer memory that is shared among all its output ports. We propose a novel buffer management technique called delayed pushout that combines a pushout mechanism (for sharing memory efficiently among queues within the same switching element) and a backpressure mechanism (for sharing memory across switch stages). The backpressure component has a threshold to restrict the amount of sharing between stages. A synergy emerges when pushout, backpressure, and this threshold are all employed together. Using a computer simulation of the switch under symmetric but bursty traffic, we study delayed pushout as well as several simpler pushout and backpressure schemes under a wide range of loads. At every load level, we find that the delayed pushout scheme has a lower cell loss rate than its competitors. Finally, we show how delayed pushout can be extended to share buffer space between traffic classes with different space priorities  相似文献   

19.
A space-division photonic switch which has the potential to achieve high dimensionality is presented. The proposed switch, which resembles a collapsed network, does not use optical crosspoints; rather a dedicated path is provided for all input/output port connections on a common high-bandwidth transmission medium. This eliminates the restrictions imposed by 2×2 switching elements in classical space-division switching fabrics. The demonstration of a fully connected 120×120 space-division time-multiplexed photonic switch is reported. The dimensionality and blocking performance of a shared-medium photonic switch that uses time-multiplexing is analyzed  相似文献   

20.
This paper is concerned with the ATM traffic characterization within the network. Most of the work performed up to now has studied the effects of traffic on the access multiplexer and the first switch of an ATM network. Various source models were assumed to generate the ATM traffic. So, while the performance of a single switch node has been exhaustively examined, the statistical behavior of the traffic modified as it crosses the network has not been thoroughly analyzed yet. This paper, through an analysis of a network of cascaded queues, indicates that limit distributions exist in the statistical behavior of the traffic streams and in the queue performance, although a formal proof is believed to be very hard to obtain. The first modelling step consists of deriving the exact interdeparture time distribution for the cells of a reference-connection arriving to the output queue of a switch node with a general interarrival time distribution and multiplexed with a background traffic stream. The analysis is iterated through a long sequence of cascaded output queues, until the interdeparture time distribution converges. Simulations show that the analytical results are accurate at each stage of the network under the hypothesis of independent queues, and are also good approximations in the case of correlated queues. This study shows that the queue performance at the limit point is always better than the M/D/1 case. The distributions found in this way depend only on the connection bandwidth and on the background traffic behavior. The initial characteristics of a connection (burst length distributions and burst interarrival time distributions) only influence the convergence speed, not the limit distribution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号