首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Wireless Sensor Networks (WSN) are mainly characterized by dense deployment of sensor nodes which collectively transmit information about sensed events to the sink. Due to the spatial correlation between sensor nodes subject to observed events, it may not be necessary for every sensor node to transmit its data. This paper shows how the spatial correlation can be exploited on the Medium Access Control (MAC) layer. To the best of our knowledge, this is the first effort which exploits spatial correlation in WSN on the MAC layer. A theoretical framework is developed for transmission regulation of sensor nodes under a distortion constraint. It is shown that a sensor node can act as a representative node for several other sensor nodes observing the correlated data. Based on the theoretical framework, a distributed, spatial Correlation-based Collaborative Medium Access Control (CC-MAC) protocol is then designed which has two components: Event MAC (E-MAC) and Network MAC (N-MAC). E-MAC filters out the correlation in sensor records while N-MAC prioritizes the transmission of route-thru packets. Simulation results show that CC-MAC achieves high performance in terms energy, packet drop rate, and latency.  相似文献   

2.
Currently most wireless sensor network applications assume the presence of single-channel medium access control (MAC) protocols. However, lower sensing range result in dense networks, single-channel MAC protocols may be inadequate due to higher demand for the limited bandwidth. In this paper we proposed a method of multi-channel support for DMAC in Wireless sensor networks (WSNs). The channel assignment method is based on local information of nodes. Our multi-channel DMAC protocol implement channel distribution before message collecting from source nodes to sink node and made broadcasting possible in DMAC. Analysis and simulation result displays this multi-channel protocol obviously decreases the latency without increasing energy consumption.  相似文献   

3.
Access control in wireless sensor networks   总被引:2,自引:0,他引:2  
Yun  Yanchao  Yuguang   《Ad hoc Networks》2007,5(1):3-13
Nodes in a sensor network may be lost due to power exhaustion or malicious attacks. To extend the lifetime of the sensor network, new node deployment is necessary. In military scenarios, adversaries may directly deploy malicious nodes or manipulate existing nodes to introduce malicious “new” nodes through many kinds of attacks. To prevent malicious nodes from joining the sensor network, access control is required in the design of sensor network protocols. In this paper, we propose an access control protocol based on Elliptic Curve Cryptography (ECC) for sensor networks. Our access control protocol accomplishes node authentication and key establishment for new nodes. Different from conventional authentication methods based on the node identity, our access control protocol includes both the node identity and the node bootstrapping time into the authentication procedure. Hence our access control protocol cannot only identify the identity of each node but also differentiate between old nodes and new nodes. In addition, each new node can establish shared keys with its neighbors during the node authentication procedure. Compared with conventional sensor network security solutions, our access control protocol can defend against most well-recognized attacks in sensor networks, and achieve better computation and communication performance due to the more efficient algorithms based on ECC than those based on RSA.  相似文献   

4.
Mobility management in Wireless Sensor Networks (WSNs) is a complex problem that must be taken into account in all layers of the protocol stack. But this mobility becomes very challenging at the MAC level in order to do not degrade the energy efficiency between sensor nodes that are in communication. However, among medium access protocols, sampling protocols reflect better the dynamics of such scenarios. Nevertheless, the main problem, of such protocols, remains the management of collisions and idle listening between nodes. Previous approaches like B-MAC and X-MAC, based on sampling protocols present some shortcomings. Therefore, we address the mobility issue of WSNs that use as medium access sampling protocols. Firstly, we propose a mobile access solution based on the X-MAC protocol which remains a reference protocol. This protocol, called MoX-MAC, incorporates different mechanisms that enables to mitigate the energy consumption of mobile sensor nodes. Furthermore, we extend our former work (Ba et al. in Proc. of IEEE WMNC, 2011) by evaluating the lifetime of static nodes with respect to MoX-MAC protocol, as well determine the degree of depletion of static nodes due to the presence of mobile nodes.  相似文献   

5.
Radio frequency energy transfer (RET) has been proposed as a promising solution to power sensor nodes in wireless sensor networks (WSNs). However, RET has a significant drawback to be directly applied to WSNs, i.e., unfairness in the achieved throughput among sensor nodes due to the difference of their energy harvesting rates that strongly depend on the distance between the energy emitting node and the energy harvesting nodes. The unfairness problem should be properly taken into account to mitigate the drawback caused from the features of RET. To resolve this issue, in this paper, we propose a medium access control (MAC) protocol for WSNs based on RET with two distinguishing features: energy adaptive (EA) duty cycle management that adaptively manages the duty cycle of sensor nodes according to their energy harvesting rates and EA contention algorithm that adaptively manages contentions among sensor nodes considering fairness. Through analysis and simulation, we show that our MAC protocol works well under the RET environment. Finally, to show the feasibility of WSNs with RET, we test our MAC protocol with a prototype system in a real environment.  相似文献   

6.
Cluster Based Routing Protocol for Mobile Nodes in Wireless Sensor Network   总被引:1,自引:1,他引:0  
Mobility of sensor nodes in wireless sensor network (WSN) has posed new challenges particularly in packet delivery ratio and energy consumption. Some real applications impose combined environments of fixed and mobile sensor nodes in the same network, while others demand a complete mobile sensors environment. Packet loss that occurs due to mobility of the sensor nodes is one of the main challenges which comes in parallel with energy consumption. In this paper, we use cross layer design between medium access control (MAC) and network layers to overcome these challenges. Thus, a cluster based routing protocol for mobile sensor nodes (CBR-Mobile) is proposed. The CBR-Mobile is mobility and traffic adaptive protocol. The timeslots assigned to the mobile sensor nodes that had moved out of the cluster or have not data to send will be reassigned to incoming sensor nodes within the cluster region. The protocol introduces two simple databases to achieve the mobility and traffic adaptively. The proposed protocol sends data to cluster heads in an efficient manner based on received signal strength. In CBR-Mobile protocol, cluster based routing collaborates with hybrid MAC protocol to support mobility of sensor nodes. Schedule timeslots are used to send the data message while the contention timeslots are used to send join registration messages. The performance of proposed CBR-Mobile protocol is evaluated using MATLAB and was observed that the proposed protocol improves the packet delivery ratio, energy consumption, delay and fairness in mobility environment compared to LEACH-Mobile and AODV protocols.  相似文献   

7.
In this paper, we consider the joint design of data compression and 802.15.4‐based medium access control (MAC) protocol for smartgrids with renewable energy. We study the setting where a number of nodes, each of which comprises electricity load and/or renewable sources, report periodically their injected powers to a data concentrator. Our design exploits the correlation of the reported data in both time and space to efficiently design the data compression using the compressed sensing technique and the MAC protocol so that the reported data can be recovered reliably within minimum reporting time. Specifically, we perform the following design tasks: (i) we employ the two‐dimensional (2D) compressed sensing technique to compress the reported data in the distributed manner; (ii) we propose to adapt the 802.15.4 MAC protocol frame structure to enable efficient data transmission and reliable data reconstruction; and (iii) we develop an analytical model based on which we can obtain efficient MAC parameter configuration to minimize the reporting delay. Finally, numerical results are presented to demonstrate the effectiveness of our proposed framework compared with existing solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Recent advances in body area network technologies such as radio frequency identification and ham radio, to name a few, have introduced a huge gap between the use of current wireless sensor network technologies and specific needs of some important wireless sensor network applications such as medical care, disaster relief, or emergency preparedness and response. In these types of applications, the mobility of nodes can occur, leading to the challenge of mobility handling. In this paper, we address this challenge by prioritizing transmissions of mobile nodes over static nodes. This is achieved by using shorter contention windows in reservation slots for mobile nodes (the so‐called backoff technique) combined with a novel hybrid medium access control (MAC) protocol (the so‐called versatile MAC). The proposed protocol advocates channel reuse for bandwidth efficiency and management purpose. Through extensive simulations, our protocol is compared with other MAC alternatives such as time division multiple access and IEEE 802.11 with request to send/clear to send exchange, chosen as benchmarks. The performance metrics used are bandwidth utilization, fairness of medium access, and energy consumption. The superiority of versatile MAC against the studied benchmark protocols is established with respect to these metrics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum‐Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum‐based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake‐up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.  相似文献   

10.
针对事件驱动型无线传感网络(EDWSN)的随机性和突发性,通过对主要无线传感网络协议的分析,提出了适合EDWSN的低能耗协议.阐述了网络层的虚拟地理路由协议和介质访问控制层(MAC)的低占空比频分复用协议(LDFDM)的设计方法,包括拓扑形成、网络维护、信道接入控制和低占空比值守同步.通过一个典型的事件驱动型无线传感器...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号