首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We are concerned with wireless sensor networks where n sensors are independently and uniformly distributed at random in a finite plane. Events that are within a fixed distance from some sensor are assumed to be detectable and the sensor is said to cover that point. In this paper, we have formulated an exact mathematical expression for the expected area that can be covered by at least k out of n sensors. Our results are important in predicting the degree of coverage a sensor network may provide and in determining related parameters (sensory range, number of sensors, etc.) for a desired level of coverage. We demonstrate the utility of our results by presenting a node scheduling scheme that conserves energy while retaining network coverage. Additional simulation results have confirmed the accuracy of our analysis.  相似文献   

2.
When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by at least k distinct sensors before it crosses the barrier of wireless sensors, we say the network provides k-barrier coverage. In this paper, we develop theoretical foundations for k-barrier coverage. We propose efficient algorithms using which one can quickly determine, after deploying the sensors, whether the deployment region is k-barrier covered. Next, we establish the optimal deployment pattern to achieve k-barrier coverage when deploying sensors deterministically. Finally, we consider barrier coverage with high probability when sensors are deployed randomly. The major challenge, when dealing with probabilistic barrier coverage, is to derive critical conditions using which one can compute the minimum number of sensors needed to ensure barrier coverage with high probability. Deriving critical conditions for k-barrier coverage is, however, still an open problem. We derive critical conditions for a weaker notion of barrier coverage, called weak k-barrier coverage.  相似文献   

3.
One of the most important issues for wireless sensor networks is to get a long network lifetime without affecting either communication connectivity or sensing coverage. Many sensors that are deployed randomly in a dense sensor network in a redundant way waste a lot of energy. One effective way to save energy is to let only a subset of sensors work at any given time. In this paper, we mainly consider such a problem. Selecting the minimum number of connected sensor nodes that can provide k-coverage (k ≥ 1), i.e., selecting a subset S of working sensors, such that almost every point in the sensing region can be covered by at least k sensors and the sensors in S can form a connected communication subgraph. We propose a connected k-coverage working sets construction algorithm (CWSC) based on Euclidean distance to k-cover the sensing region while minimizing the number of working sensors. CWSC can produce different coverage degrees according to different applications, which can enhance the flexibility of the sensor network. Simulation results show that the proposed algorithm, which can conserve energy and prolong the lifetime of the sensor network, is better than the previous algorithms.  相似文献   

4.
The progress of development on sensor networks has inspired many new applications. Some of these applications require the target to be observed by more than one sensors simultaneously. Sensor coverage, which reflects how well a sensor network is monitored by sensors, is an important measure for the quality of service (QoS) that a sensor network can provide. In this paper, we addressed the coverage problem from two different view points and referred to them as the worst-case and best-case coverage problems. Most existing works on these two problems assumed that the coverage degree is one (i.e. the target area falls within the sensing range of at least one sensor). In this paper, we address the k-coverage problem, where the coverage degree is a user-defined parameter k. This is a generalization of the earlier work where only k=1 is assumed. By combining geometric and algorithmic techniques, we establish optimal algorithms to solve the two variants of the k-coverage problem in polynomial time. An important extension of our study on the k-coverage problem was also proposed: the distributed algorithm for the problem. This helps in applying the proposed algorithm under more practical scenarios.  相似文献   

5.
In wireless sensor networks, both nodes and links are prone to failures. In this paper we study connectivity properties of large-scale wireless sensor networks and discuss their implicit effect on routing algorithms and network reliability. We assume a network model of n sensors which are distributed randomly over a field based on a given distribution function. The sensors may be unreliable with a probability distribution, which possibly depends on n and the location of sensors. Two active sensor nodes are connected with probability p e (n) if they are within communication range of each other. We prove a general result relating unreliable sensor networks to reliable networks. We investigate different graph theoretic properties of sensor networks such as k-connectivity and the existence of the giant component. While connectivity (i.e. k = 1) insures that all nodes can communicate with each other, k-connectivity for k > 1 is required for multi-path routing. We analyze the average shortest path of the k paths from a node in the sensing field back to a base station. It is found that the lengths of these multiple paths in a k-connected network are all close to the shortest path. These results are shown through graph theoretical derivations and are also verified through simulations.  相似文献   

6.
Deployment of a wireless sensor network is a challenging problem, especially when the environment of the network does not allow either of the random deployment or the exact placement of sensor nodes. If sensor nodes are mobile, then one approach to overcome this problem is to first deploy sensor nodes randomly in some initial region within the area of the network, and then let the sensor nodes to move around and cooperatively and gradually increase the covered section of the area. Recently, a cellular learning automata-based deployment strategy, called CLA-DS, is introduced in literature which follows this approach and is robust against inaccuracies which may occur in the measurements of sensor positions or in the movements of sensor nodes. Despite its advantages, this deployment strategy covers every point within the area of the network with only one sensor node, which is not enough for applications with k-coverage requirement. In this paper, we extend CLA-DS so that it can address the k-coverage requirement. This extension, referred to as CLA-EDS, is also able to address k-coverage requirement with different values of k in different regions of the network area. Experimental results have shown that the proposed deployment strategy, in addition to the advantages it inherits from CLA-DS, outperforms existing algorithms such as DSSA, IDCA, and DSLE in covering the network area, especially when required degree of coverage differs in different regions of the network.  相似文献   

7.
With the rapid technological development of sensors, many applications have been designed to use wireless sensor networks to monitor a certain area and provide quality-of-service guarantees. Therefore, the coverage problem had an important issue for constructing wireless sensor networks. Recently, a coverage problem of constructing a minimum size wireless sensor network to fully cover critical squares in a sensor field, termed CRITICAL-SQUARE-GRID COVERAGE, has received much attention. CRITICAL-SQUARE-GRID COVERAGE is shown to be NP-Complete, and an approximation algorithm, termed Steiner-tree-based critical grid covering algorithm (STBCGCA), is proposed accordingly. In STBCGCA, a sensor is selected to cover critical squares only if at least one of the critical squares is fully covered by the sensor. However, a critical square grid can be cooperatively covered by two or more sensors; that is, one sensor covers one part of the critical square, and the other sensors cover the other part of the critical square. This motivates us to propose two efficient algorithms based on STBCGCA, termed critical-grid-partitioned (CGP-STBCGCA) and reference-point-covered (RPC-STBCGCA), that select sensors that can cooperatively cover critical squares in an attempt to minimize the size of the wireless sensor network. The theoretical analysis shows that sensors deployed by CGP-STBCGCA and RPC-STBCGCA can form a connected wireless sensor network that fully covers all critical grids. In addition, a performance guarantee for CGP-STBCGCA is provided. Simulation results show that the ratio of the average number of deployed sensors in STBCGCA to that in CGP-STBCGCA and RPC-STBCGCA in about 90 % of the cases was between 1.08 and 2.52 for CRITICAL-SQUARE-GRID COVERAGE.  相似文献   

8.
Coverage by randomly deployed wireless sensor networks   总被引:2,自引:0,他引:2  
One of the main applications of wireless sensor networks is to provide proper coverage of their deployment regions. A wireless sensor network k-covers its deployment region if every point in its deployment region is within the coverage ranges of at least k sensors. In this paper, we assume that the sensors are deployed as either a Poisson point process or a uniform point process in a square or disk region, and study how the probability of the k-coverage changes with the sensing radius or the number of sensors. Our results take the complicated boundary effect into account, rather than avoiding it by assuming the toroidal metric as done in the literature.  相似文献   

9.
Barrier coverage of a wireless sensor network is a critical issue in military and homeland security applications, aiming to detect intruders that attempt to cross the deployed region. While a range of problems related to barrier coverage have been investigated, little effort has been made to explore the effects of different sensor deployment strategies and mechanisms to improve barrier coverage of a wireless sensor network after it is deployed. In this paper we study the barrier coverage of a line-based sensor deployment strategy and explore how to exploit sensor mobility to improve barrier coverage. We first establish a tight lower bound for the existence of barrier coverage under the line-based deployment. Our results show that the barrier coverage of the line-based deployment significantly outperforms that of the Poisson model when the random offsets are relatively small compared to the sensor’s sensing range. To take advantage of the performance of line-based deployment, we further devise an efficient algorithm to relocate mobile sensors based on the deployed line so as to improve barrier coverage. The algorithm finds barrier gaps and then relocates mobile sensors to fill the gaps while at the same time balancing the energy consumption among mobile sensors. Simulation results show that the algorithms can effectively improve the barrier coverage of a wireless sensor network for a wide range of deployment parameters. Therefore, in wireless sensor network applications, the coverage goal, possible sensor deployment strategies, and sensor mobility must be carefully and jointly considered. The results obtained in this paper will provide important guidelines and insights into the deployment and performance of wireless sensor networks for barrier coverage.  相似文献   

10.
A Survey of Energy-Efficient Scheduling Mechanisms in Sensor Networks   总被引:4,自引:0,他引:4  
Sensor networks have a wide range of potential, practical and useful applications. However, there are issues that need to be addressed for efficient operation of sensor network systems in real applications. Energy saving is one critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limited lifetime. To extend the lifetime of a sensor network, one common approach is to dynamically schedule sensors' work/sleep cycles (or duty cycles). Moreover, in cluster-based networks, cluster heads are usually selected in a way that minimizes the total energy consumption and they may rotate among the sensors to balance energy consumption. In general, these energy-efficient scheduling mechanisms (also called topology configuration mechanisms) need to satisfy certain application requirements while saving energy. In this paper, we provide a survey on energy-efficient scheduling mechanisms in sensor networks that have different design requirements than those in traditional wireless networks. We classify these mechanisms based on their design assumptions and design objectives. Different mechanisms may make different assumptions about their sensors including detection model, sensing area, transmission range, failure model, time synchronization, and the ability to obtain location and distance information. They may also have different assumptions about network structure and sensor deployment strategy. Furthermore, while all the mechanisms have a common design objective to maximize network lifetime, they may also have different objectives determined by their target applications. A preliminary was presented in BROADNETS 2006 [29]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号