首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Degrees of freedom in adaptive modulation: a unified view   总被引:2,自引:0,他引:2  
We examine adaptive modulation schemes for flat-fading channels where the data rate, transmit power, and instantaneous BER are varied to maximize spectral efficiency, subject to an average power and BER constraint. Both continuous-rate and discrete-rate adaptation are considered, as well as average and instantaneous BER constraints. We find the general form of power, BER and data rate adaptation that maximizes spectral efficiency for a large class of modulation techniques and fading distributions. The optimal adaptation of these parameters is to increase the power and data rate and decrease the BER as the channel quality improves. Surprisingly, little spectral efficiency is lost when the power or rate is constrained to be constant. Hence, the spectral efficiency of adaptive modulation is relatively insensitive to which degrees of freedom are adapted  相似文献   

2.
To approach the potential multiple-input multiple-output (MIMO) capacity while optimizing the system bit-error rate (BER) performance, the joint transmit and receive minimum mean squared error (joint Tx/Rx MMSE) design has been proposed. It is the optimal linear scheme for spatial multiplexing MIMO systems, assuming a fixed number of spatial streams p as well as fixed modulation and coding across these spatial streams. However, the number of spatial streams has been arbitrarily chosen and fixed, which may lead to an inefficient power allocation strategy and a poor BER performance. In this paper, we relax the constraint of fixed number of streams p and optimize this value for the current channel realization, under the constraints of fixed average total transmit power P/sub T/ and fixed rate R, what we refer to as mode selection . Based on the observation of the existence of a dominant optimal number of streams value for the considered Rayleigh flat-fading MIMO channel model, we further propose an "average" mode selection that avoids the per-channel adaptation through using the latter dominant value for all channel realizations. Finally, we exhibit the significant BER improvement provided by our mode selection over the conventional joint Tx/Rx MMSE design. Such significant improvement is due to the better exploitation of the MIMO spatial diversity and the more efficient power allocation enabled by our mode selection.  相似文献   

3.
Switching between diversity and multiplexing in MIMO systems   总被引:3,自引:0,他引:3  
Multiple-input multiple-output (MIMO) wireless communication systems can offer high data rates through spatial multiplexing or substantial diversity using transmit diversity. In this letter, switching between spatial multiplexing and transmit diversity is proposed as a simple way to improve the diversity performance of spatial multiplexing. In the proposed approach, for a fixed rate, either multiplexing or diversity is chosen based on the instantaneous channel state and the decision is conveyed to the transmitter via a low-rate feedback channel. The minimum Euclidean distance at the receiver is computed for spatial multiplexing and transmit diversity and is used to derive the selection criterion. Additionally, the Demmel condition number of the matrix channel is shown to provide a sufficient condition for multiplexing to outperform diversity. Monte Carlo simulations demonstrate improvement over either multiplexing or diversity individually in terms of bit error rate.  相似文献   

4.
Adaptive MQAM modulation is used to maximize spectral efficiency of Multiple-Input Multiple-Output (MIMO) systems while keeping bit error rate (BER) under a target level. Closed-form expressions of the average spectral efficiency, coined as discrete-rate spectral efficiency (DRSE), are derived for adaptive modulation MIMO systems using different algorithms. To further enhance the spectral efficiency, a low complexity adaptation scheme is suggested to switch across different algorithms based on the DRSE. In the current letter, we investigate the adaptation scheme that switches between Orthogonal Space-Time Block Codes (OSTBC) and spatial multiplexing with zero-forcing (ZF) detection for MIMO systems with two transmit antennas. Two types of operating environment are considered: flat Rayleigh fading channel without spatial correlation and spatially correlated Rayleigh fading channel with transmit correlation.  相似文献   

5.
In this paper, we propose an adaptive power distribution algorithm which aims at improving the spectral efficiency in orthogonal frequency division multiplexing (OFDM) under the condition that the target bit error rate (BER) should be maintained and the transmit power threshold should not be exceeded. This algorithm is based on the iterative mechanism. In every iteration, the power and the corresponding number of bits are loaded to the subcarrier at which there is a modulation mode demanding the minimum average incremental transmit power per incremental bit to guarantee the pre-designated bit error rate (BER) performance. The iterative procedure terminates once the transmit power threshold is reached. The performance investigations show the proposed adaptive power distribution algorithm always outperforms the scheme of equal power distribution in a large dynamic range of transmit power threshold. Moreover, the performance improvement is very large when the transmit power threshold is required to be low.  相似文献   

6.
Geometric mean decomposition (GMD) has emerged as an alternative method to design multiple-input multiple-output (MIMO) transceivers. The MIMO-GMD scheme decouples the MIMO channel into multiple independent links with identical gains. The GMD-based system with zero-forcing decision feedback equalizer (ZF-DFE) is known to minimize the bit error rate (BER) for high signal-to-noise ratios (SNRs). In addition, adaptive modulation has been widely used to enhance the average spectral efficiency (ASE) while maintaining a target BER and transmit power. In this paper, we present an analytic study of the adaptive modulation for GMD-ZF-DFE systems under Rayleigh flat fading correlated channels. In order to adjust the constellation size, the SNR at the equalizer output is sent back to the transmitter. The SNR at the DFE output is a function of the determinant of a Wishart complex matrix. The complementary cumulative distribution function (CCDF) is then an important key to our analysis. To evaluate the performance of the considered system, we use some bounds on the CCDF of the determinant and the trace of a Wishart matrix. Closed-form expressions of the BER, the ASE and the outage probability are derived and compared to Monte Carlo simulation results. Furthermore, we analyze the effect of the channel spatial correlation.  相似文献   

7.
Focusing on the uplink, where mobile users (each with a single transmit antenna) communicate with a base station with multiple antennas, we treat multiple users as antennas to enable spatial multiplexing across users. Introducing distributed closed-loop spatial multiplexing with threshold-based user selection, we propose two uplink channel-assigning strategies with limited feedback. We prove that the proposed system also outperforms the standard greedy scheme with respect to the degree of fairness, measured by the variance of the time averaged throughput. For uplink multi-antenna systems, we show that the proposed scheduling is a better choice than the greedy scheme in terms of the average BER, feedback complexity, and fairness. The numerical results corroborate our findings.  相似文献   

8.
Cyclic delay diversity employing multiple transmit antenna provides increased frequency selectivity and thereby improves the frequency diversity in coded orthogonal frequency division multiplexing (OFDM). However, spatial correlation due to insufficient spacing between transmit antennas degrades the diversity performance. In this paper, the correlation of effective channel frequency response (CFR) of CDD OFDM is analysed and then propose constellation rotation and adjacent interleaving (CRAI) scheme over spatially correlated channel. In the proposed scheme, the subcarrier constellation is rotated by a known angle and then imaginary parts of rotated adjacent subcarriers are interleaved. The squared Euclidean distance of the codewords is derived to show the effect of constellation rotation. Adjacent interleaving is shown to exploit the frequency diversity by reducing the variation in average channel power (ACP) due to spatial correlation. Simulation results reveal that the proposed scheme performs well in spatial correlated channel and thereby improves the bit error rate (BER) performance.  相似文献   

9.
为了在无线数据传输中获得更高的频谱利用率,提出了一种用于正交频分复用(OFDM)的基于容量估计的子带自适应Turbo编码调制方法。其目标是在恒定发送功率和目标误码率(BER)限制下优化系统吞吐。仿真表明,在发端完全信道估计下,此自适应OFDM方法比基于固定门限的自适应Turbo编码调制有2.5-5 dB的信噪比(SNR)增益。然而,时变信道中反馈信息的延时会带来自适应性能的恶化。文中接着通过研究表明,在子带自适应编码调制中,减少选取子带的个数,充分利用OFDM频域上的分集特性是一种可以降低信道时变带来性能恶化的有效途径。  相似文献   

10.
Joint optimization of signal-to-noise ratio (SNR) target and transmission rate adaptation is examined for multilevel quadrature amplitude modulation (MQAM) over flat-fading channels, to maximize the spectral efficiency subject to an average transmit power constraint. We propose an adaptive transmission scheme in which the outer-loop SNR target and data rate are adapted to bit-error rate (BER), where total or truncated channel-inversion strategies are exploited for the (fast) inner-loop power control. We obtain the optimal solutions for both continuous and discrete rate adaptation, and consider cases where diversity combining is performed in the receiver. We show that by using this BER-based adaptive scheme, spectral efficiency can be improved compared with optimal SNR-based variable-rate variable-power MQAM. We also show that for continuous rate adaptation, the optimal SNR target monotonically increases with BER, while it descends within a BER range with constant rate  相似文献   

11.
李威  李聪 《山西电子技术》2004,10(6):11-12,27
探讨了时变信道里MIMO系统的自适应编码调制问题并且提出一个低复杂率量化方案,被称为增强型码率量化方案,也叫ERQ。不需要大量计算,ERQ可以通过最佳连续码率和功率适应提高频谱效率。除此之外,ERQ还满足误码率和平均传送能量限制条件。  相似文献   

12.
In this paper, a modified-rate-quantization algorithm for multiple input multiple output (MIMO) systems is proposed using singular-value decomposition (SVD). This low complexity scheme adapts the subchannel transmit power and spectral efficiency in the spatial and temporal domains under transmit power and instantaneous bit error rate (BER) constraints. It is shown that with five discrete-rate levels, the proposed scheme reaches a spectral efficiency performance similar to the scheme with a continuous rate. The robustness of the proposed scheme to channel state information (CSI) imperfections is also studied. The obtained results show that the spectral efficiency is unaffected up to a certain level, but the bit error rate (BER) performance is particularly sensitive to these imperfections, especially at high SNR levels. Indeed, this ideally designed MIMO system over-estimates the subchannels, which leads to a deterioration of the BER performance. A new version of this algorithm, which is suitable for vertical Bell Labs layered space–time (V-BLAST) systems, is also presented. Through simulation results, it appears that the extended algorithm allows to reach a better performance in terms of spectral efficiency than other known schemes, but it is more sensitive to imperfect CSI than the first version.  相似文献   

13.
Variable-rate variable-power MQAM for fading channels   总被引:9,自引:0,他引:9  
We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity  相似文献   

14.
Generalized Space Shift Keying (GSSK) modulation is a low-complexity spatial multiplexing technique for multiple-antenna wireless systems. However, effective transmit antenna combinations have to be preselected, and there exist redundant antenna combinations which are not used in GSSK. In this paper, a novel adaptive mapping scheme for GSSK modulation, named as Adaptive Mapping Generalized Space Shift Keying (AMGSSK), is presented. Compared with GSSK, the antenna combinations are updated adaptively according to the Channel State Information (CSI) in the proposed AMGSSK system, and the performance of average Symbol Error Rate (SER) is reduced considerably. In the proposed scheme, two algorithms for selecting the optimum antenna combinations are described. The SER performance of AMGSSK is analyzed theoretically, and validated by Monte Carlo simulation. It is shown that the proposed AMGSSK scheme has good performance in SER and spectral efficiency.  相似文献   

15.
Space-time block codes (STBCs) are known to orthogonalize the multiple input multiple out (MIMO) wireless channels. In this paper, we study the capacity of STBCs over Weibull MIMO channels under three adaptive transmission techniques: optimal power and rate adaptation, optimal rate adaptation with constant transmit power and channel inversion with fixed rate, and obtain closed-form expressions for the corresponding capacity. This capacity provides an upper bound on spectral efficiency using these techniques and avoids Monte Carlo simulations. Moreover, we also examine the effects of the fading severity on the concerned quantities. The figures show that our theoretical results of channel capacity line up exactly with the simulations.  相似文献   

16.
孙科  邵士海  唐友喜 《电子学报》2011,39(11):2680-2685
在分布式残余频偏信道中,考虑多径瑞利衰落,针对采用判决反馈检测的两发射天线STBC-OFDM链路,提出了一种发射功率优化方法:根据平均信道功率增益、残余频偏方差以及噪声方差的大小,以最小化平均误比特率下界为目标,设置两分布发射天线的发射功率,仿真结果表明:相比于传统的各天线满功率发射方法,所提方法能够在节省发射功率的同...  相似文献   

17.
This paper proposes an adaptive transmission modulation (ATM) technique for free‐space optical (FSO) links over gamma‐gamma turbulence channels.The ATM technique provides efficient utilization of the FSO channel capacity for improving spectral efficiency, by adapting the order of the phase‐shift keying modulation scheme, according to the channel conditions and the required bit error rate (BER). To overcome the channel degradation resulting from the turbulence effects as well as the pointing errors (PEs), single‐input multiple‐output (SIMO) system with maximal ratio combining (MRC) is proposed. Exact closed‐form expressions of BER and upper bound of the capacity are derived and verified by Monte Carlo simulations. The numerical results show that the proposed adaptive technique improves the spectral efficiency (SE) five times higher than the nonadaptive technique at the same BER threshold (10?3).This improvement is achieved at signal‐to‐noise ratio (SNR) equals 27 and 42  dB in the case of atmospheric turbulence without and with PE, respectively. Furthermore, this SE could be obtained while the SNR = 30  dB by using ( 1 × 4 ) SIMO scheme with MRC and PE and having the same transmitting optical power.  相似文献   

18.
In this letter, the utilization of a finite number of power levels per constellation in adaptive QAM schemes for flat fading channels is analyzed. Assuming a maximum target BER, the optimum switching thresholds in order to maximize the spectral efficiency are found for Rayleigh fading. Both analysis and simulation results show that a small number of power levels per constellation allows to obtain a good compromise between high spectral efficiency and low feedback information rate  相似文献   

19.
We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions, most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades, the modulation gradually reduces its data throughput and reallocates most of its available power to ensure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit error rate (BER) for both voice and data transmission over Nakagami-m fading channels. We also discuss the features and advantages of the proposed scheme. For example, in Rayleigh fading with an average signal-to-noise ratio (SNR) of 20 dB, our scheme is able to transmit about 2 bits/s/Hz of data at an average BER of 10 -5 while sending about 1 bit/s/Hz of voice at an average BER of 10-2  相似文献   

20.
Transmit antenna selection in spatially multiplexed multiple-input multiple-output (MIMO) systems is a low complexity low-rate feedback technique, which involves transmission of a reduced number of streams from the maximum possible to improve the error rate performance of linear receivers. It has been shown to be effective in enhancing the performance of single-user interference-free point-to-point MIMO systems. However, performance of transmit antenna selection techniques in interference-limited environments and over frequency selective channels is less well understood. In this paper, we investigate the performance of transmit antenna selection in spatially multiplexed MIMO systems in the presence of co-channel interference. We propose a transmission technique for the downlink of a cellular MIMO system that employs transmit antenna selection to minimize the effect of co-channel interference from surrounding cells. Several transmit antenna selection algorithms are proposed and their performance is evaluated in both frequency flat and frequency selective channels. Various antenna selection algorithms proposed in the literature for single user MIMO links are extended to a cellular scenario, where each user experiences co-channel interference from the other cells (intercell interference) in the system. For frequency selective channels, we consider orthogonal frequency division multiplexing (OFDM) with MIMO. We propose a selection algorithm that maximizes the average output SINR over all subcarriers. A method to quantify selection gain in frequency selective channel is discussed. The effect of delay spread on the selection gain is studied by simulating practical fading environments with different delay spreads. The effect of the variable signal constellation sizes and the number of transmitted streams on the bit error rate (BER) performance of the proposed system is also investigated in conjunction with the transmit antenna selection. Simulation results show that for low to moderate interference power, significant improvement in the system performance is achievable with the use of transmit antenna selection algorithms. Even though the gain due to selection in frequency selective channels is reduced compared to that in flat fading channels due to the inherent frequency diversity, the performance improvement is significant when the system is interference limited. The performance improvement due to reduced number of transmit streams at larger signal constellation sizes is found to be more significant in spatially correlated scenarios, and the gain due to selection is found to be reduced with the increased delay spread. It is found that employing transmit antenna selection algorithms in conjunction with adaptation of the number of transmitted streams and the signal constellation sizes can significantly improve the performance of MIMO systems with co-channel interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号