首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Harvesting low-grade waste heat from the natural environment with thermoelectric materials is considered as a promising solution for the sustainable energy supply for wearable electronic devices. For practical applications, it is desirable to endow the thermoelectric materials with excellent mechanical and self-healing properties, which remains a great challenge. Herein, the design and characterization of a series of high-performance ionic hydrogels for soft thermoelectric generator applications are reported. Composed of a physically cross-linked network of polyacrylic acid (PAA) and polyethylene glycol (PEO) doped with sodium chloride, the resulting PAA-PEO-NaCl ionic hydrogels demonstrates impressive mechanical strength (breaking stress >1.3 MPa), stretchability (>1100%), and toughness (up to 7.34 MJ m−3). Moreover, the reversible hydrogen bonding interaction and chain entanglement render the ionic hydrogels with excellent mechanical resilience, adhesion properties, and self-healing properties. At ambient conditions, the electrochemical and thermoelectric performance of the ionic hydrogels can be restored immediately from physical damage such as cutting, and the mechanical healing can be completely restored within 24 h. At the optimized composition, the Seebeck coefficient of the ionic hydrogels can reach 3.26 mV K−1 with a low thermal conductivity of 0.321 W m−1 K−1. Considering the excellent mechanical properties and thermoelectric performance, it is believed that the ionic hydrogels are widely applicable in ionic thermoelectric capacitors to convert low-grade heat into electricity for soft electronic devices.  相似文献   

2.
Polyvinyl butyral (PVB) is a well-established polymer interlayer material that has been used in laminated safety glass panels for over 80 years. However, its intrinsically poor ionic conductivity (σ) severely restricts its widespread application as a solid polymer electrolyte (SPE) for laminated WO3–NiO electrochromic devices (ECDs). Here, a new strategy for significantly improving the σ of PVB via a cross-linking reaction with 3-glycidoxypropyltrimethoxysilane (KH560) is presented. The cross-linked PVB-SPE with 10 wt.% KH560 exhibits the highest room-temperature σ value among the investigated samples (1.51 × 10−4 S cm−1), which is also higher than that of previously reported PVB-based SPEs (10−5–10−7 S cm−1). Additionally, the prepared SPE exhibits comprehensive optical, mechanical, and thermal performances, including a high visible transmittance (>91%), relatively high adhesive strength (2.13 MPa), and superior thermal stability (up to 150 °C). Laminated WO3–NiO ECDs with dimensions of 5 × 5 cm2 and 20 × 20 cm2, fabricated by leveraging the aforementioned properties of the electrolyte, operate stably at temperatures ranging from −20 to 80 °C, underscoring the potential of the PVB-SPE for realizing commercially viable large-area ECDs.  相似文献   

3.
Solid–solid interfaces in the composite cathode for solid-state batteries face the thorny issues of poor physical contact, chemical side reaction, temporal separation, and sluggish Li+/e transfer. Developing key material to achieve the composite cathode with efficient solid–solid interfaces is critical to improving the coulombic efficiency, cycling life, and energy density of solid-state batteries. Herein, electronic and ionic dual conductive polymer (DCP) is prepared for the composite cathode via intermolecular interaction on the base of lithiated polyvinyl formal-derived Li+ single-ion conductor (LiPVFM), lithium difluoro(oxalato)borate (LiODFB), and electronic conducting polymer. Crosslinking, coordination, and hydrogen-bonding effect enable DCP with high electrical conductivity of 68.9 S cm−1, Li+ ionic conductivity (2.76 × 10−4 S cm−1), large electrochemical window above 6 V and a high modulus of 6.8 GPa. Besides, DCP can form a coating layer on the active material powders to maintain structural integrity via buffering the internal stress during lithiation/delithiation, meanwhile, to construct long- and short-range electronic/ionic conductive channel together with a small amount of CNTs. Rigid and flexible DCP-based composite cathode enables the excellent cycling of solid-state batteries with a high loading up to 11.7 mg cm−2 and high content of active materials close to 90 wt% without current collector.  相似文献   

4.
Conducting polymer hydrogels are widely used as strain sensors in light of their distinct skin-like softness, strain sensitivity, and environmental adaptiveness in the fields of wearable devices, soft robots, and human-machine interface. However, the mechanical and electrical properties of existing conducting polymer hydrogels, especially fatigue-resistance and sensing robustness during long-term application, are unsatisfactory, which severely hamper their practical utilities. Herein, a strategy to fabricate conducting polymer hydrogels with anisotropic structures and mechanics is presented through a combined freeze-casting and salting-out process. The as-fabricated conducting polymer hydrogels exhibit high fatigue threshold (>300 J m−2), low Young's modulus (≈100 kPa), as well as long-term strain sensing robustness (over 10 000 cycles). Such superior performance enables their application as strain sensors to monitor the real-time movement of underwater robotics. The design and fabrication strategy for conducting polymer hydrogels reported in this study may open up an enticing avenue for functional soft materials in soft electronics and robotics.  相似文献   

5.
Soft robots are susceptible to premature failure from physical damages incurred within dynamic environments. To address this, we report an elastomer with high toughness, room temperature self-healing, and strong adhesiveness, allowing both prevention of damages and recovery for soft robotics. By functionalizing polyurethane with hierarchical hydrogen bonds from ureido-4[1H]-pyrimidinone (UPy) and carboxyl groups, high toughness (74.85 MJ m−3), tensile strength (9.44 MPa), and strain (2340%) can be achieved. Furthermore, solvent-assisted self-healing at room temperature enables retention of high toughness (41.74 MJ m−3), tensile strength (5.57 MPa), and strain (1865%) within only 12 h. The elastomer possesses a high dielectric constant (≈9) that favors its utilization as a self-healing dielectric elastomer actuator (DEA) for soft robotics. Displaying high area strains of ≈31.4% and ≈19.3% after mechanical and electrical self-healing, respectively, the best performing self-healable DEA is achieved. With abundant hydrogen bonds, high adhesive strength without additional curing or heating is also realized. Having both actuation and adhesive properties, a “stick-on” strategy for the assembly of robust soft robots is realized, allowing soft robotic components to be easily reassembled or replaced upon severe damage. This study highlights the potential of soft robots with extreme ruggedness for different operating conditions.  相似文献   

6.
The anode materials for sodium-ion batteries (SIBs) such as soft carbon, hard carbon, or alloys suffer from low specific capacity, poor rate capability, and high cost. Various transition metal oxides materials possess high specific capacity and suitable working potential, however, huge volume change and unstable electrode/electrolyte interfaces limit their practical applications. Herein, an ultrathin carbon-coated iron-based borate, (Fe3BO5), as an anode material for SIBs is reported. The carbon coated Fe3BO5 composite as an anode material possesses a reversible specific capacity of 548 mAh g−1 with a high initial coulombic efficiency of 72.6% at a current density of 50 mA g−1, and maintains a capacity retention ratio of 99% after 1000 cycles at 2000 mA g−1. Moreover, this anode can work well over a wide temperature range (-40–60 °C). Furthermore, a sodium-ion full cell using this anode coupling with iron-based cathode (Na3Fe2(PO4)2(P2O7)@rGO) cathode is fabricated, which exhibits a wide operating temperature range from −40 to 60 °C with a maximum energy density of 175 Wh Kg−1 and a maximum power density of 1680 W Kg−1. Most importantly, this full-cell configuration is low-cost due to its inexpensive iron based raw material for both anode and cathode.  相似文献   

7.
In cellulose-based plastics, as a type of thermoplastic and thermosetting materials, the excellent balance of mechanical strength and ductility poses a large challenge. To tackle this problem, a novel approach is devised to introduce reversible non-covalent ester cross-linking into dynamic covalent hydrogen-bonded polymer networks. However, the formation of ester bonds typically requires excess reactants and dehydrating agents, which is energy-intensive, environmentally harmful, and costly. To address these concerns, inspired by polyester-rich plant bark, a supramolecular composite material is developed. It can be dissolved and regenerated using a binary solvent system (choline hexanoate/choline chloride-oxalic acid). In water, this supramolecular composite material underwent self-healing and ester exchange reactions to form double-cross-linked networks, interfaced with photo-thermal catalysis promoting the reaction due to its high photo-thermal conversion efficiency (86.7%) and water evaporation rate (1.38 kg m−2 h−1). This enables the rapid and repeatable construction of durable and stretchable biomaterials. The mechanical properties of the supramolecular plastic can be adjusted by solar photo-thermal conditions of the synthesis environment. These materials exhibit high performance in solar water evaporation and have self-healing properties and are degradable, recyclable, and capable of eliminating their own adhesions.  相似文献   

8.
Inorganic/organic dielectric nanocomposites have been extensively explored for energy storage applications for their ease of processing, flexibility, and low cost. However, achieving simultaneous high energy density and high efficiency under practically workable electric fields has been a long-standing challenge. Guided by first-principles calculations of interface properties and phase-field simulations of the dynamic dielectric breakdown process, superhierarchical nanocomposites of ferroelectric perovskites, layered aluminosilicate nanosheets, and an organic polymer matrix are designed and simultaneous high energy density of 20 J cm−3 and high efficiency of 84% at a low electric field of 510 MV m−1 are achieved. This is the highest energy density of all the state-of-the-art dielectric polymer nanocomposites with energy efficiency > 80% at a low electric field of <600 MV m−1. Strong atomic hybridization, large ionic displacement, the enhanced breakdown strength through forming charge-blocking layers, and the superhierarchical microstructure with gradient interfaces are responsible for the high performances. This superhierarchical structuring modulation strategy is generally applicable to composites for different functionalities and applications.  相似文献   

9.
Vitrimers, with their unique dynamic covalent bonds, possess attractive self-healability and mechanical robustness, providing an intriguing opportunity to construct functional soft materials. However, their potential for function recovery, especially optical function, is underexplored. Harnessing the synergistic effect of photonic crystals and vitrimers, a novel photonic vitrimer with light regulating and self-healing capabilities is presented. The resulting photonic vitrimer exhibits a large tensile strain (>1000%), high toughness (21.2 kJ m−3), bright structural color, and mechanochromism. Notably, the structural color remains constant even after 10 000 stretching/releasing cycles, showing superior mechanical stability, creep-resistance, and excellent durability. More importantly, the exchange of dynamic covalent bonds imparts the photonic vitrimer with a self-healing ability (>95% efficiency), enabling the recovery of its optical function. Benefiting from the above merits, the photonic vitrimer has been successfully used as a sensor for human motion detection, which demonstrates visualized interactive sensibility even after self-repairing. This material design provides a general strategy for optical functionalization of vitrimers. The photonic vitrimer elastomers present great potential as resilient functional soft materials for diverse flexible devices and a novel optical platform for soft robotics, smart wearable devices, and human-machine interaction.  相似文献   

10.
The practical use of polyethylene oxide polymer electrolyte in the solid-state sodium metallic batteries (SSMBs) suffers from the retard Na+ diffusion at the room temperature, mechanical fragility as well as the oxidation tendency at high voltages. Herein, a hetero-layered composite polymeric electrolyte (CPE) is proposed to enable the simultaneous interfacial stability with the high voltage cathodes (till 4.2 V) and Na metallic anode. Being incorporated within the polymer matrix, the sand-milled Na3Zr2Si2PO12 nanofillers and nanocellulose scaffold collectively endow the thin-layer (25 µm), ultralightweight (1.65 mg cm−2) CPE formation with an order of magnitude enhancement of the mechanical strength (13.84 MPa) and ionic conductivity (1.62 × 10−4 S cm−1) as compared to the pristine polymer electrolyte, more importantly, the improved dimension stability up to 180 °C. Upon the integration of the hetero-layered CPE with the iron hexacyanoferrate FeHCF cathode (1 mAh cm−2) and the Na foil, the cell model can achieve the room-temperature cycling stability (93.73% capacity retention for 200 cycles) as well as the high temperature tolerance till 80 °C, which inspires a quantum leap toward the surface-wetting-agent-free, energy-dense, wide-temperature-range SSMB prototyping.  相似文献   

11.
Controlling the structure of graphene-based materials with improved ion intercalation and diffusivity is crucial for their applications, such as in aluminum-ion batteries (AIBs). Due to the large size of AlCl4 ions, graphene-based cathodes have specific capacities of ≈60 to 148 mAh g−1, limiting the development of AIBs. A thermal reductive perforation (TRP) strategy is presented, which converts three-layer graphene nanosheets to surface-perforated graphene materials under mild temperature (400 °C). The thermal decomposition of block copolymers used in the TRP process generates active radicals to deplete oxygen and create graphene fragments. The resultant material has a three-layer feature, in-plane nanopores, >50% expanded interlayer spacing, and a low oxygen content comparable to graphene annealed at a high temperature of ≈3000 °C. When applied as an AIB cathode, it delivers a reversible capacity of 197 mAh g−1 at a current density of 2 A g−1 and reaches 92.5% of the theoretical capacity predicted by density-functional theory simulations.  相似文献   

12.
Soft, elastically deformable composites can enable new generations of multifunctional materials for electronics, robotics, and reconfigurable structures. Liquid metal (LM) droplets dispersed in elastomer matrices represent an emerging material architecture that has shown unique combinations of soft mechanical response with exceptional electrical and thermal functionalities. These properties are strongly dependent on the material composition and microstructure. However, approaches to control LM microdroplet morphology to program mechanical and functional properties are lacking. Here, this limitation is overcome by thermo‐mechanically shaping LM droplets in soft composites to create programmable microstructures in stress‐free materials. This enables LM loadings up to 70% by volume with prescribed particle aspect ratios and orientation, enabling control of microstructure throughout the bulk of the material. Through this microstructural control in soft composites, a material which simultaneously achieves a thermal conductivity as high as 13.0 W m?1 K?1 (>70 × increase over polymer matrix) with low modulus (<1.0 MPa) and high stretchability (>750% strain) is demonstrated in stress‐free conditions. Such properties are required in applications that demand extreme mechanical flexibility with high thermal conductivity, which is demonstrated in soft electronics, wearable robotics, and electronics integrated into 3D printed materials.  相似文献   

13.
Three novel planarized CPB derivatives (ICzCz, ICzPCz, ICzICz) have been synthesized and characterized concerning applications as host materials for PhOLEDs. The incorporation of fully planar indolo[3,2,1-jk]carbazole (ICz) in the CBP scaffold has been systematically investigated, revealing a significant impact on molecular properties, such as improved thermal stability (tg > 110 °C), high triplet energies (ET > 2.81 eV) and charge transport properties. Employing the newly developed materials as host materials, efficient green PhOLEDs (CEmax: 60.1 cd A−1, PEmax: 42.1 lm W−1, EQEmax: 15.9%) with a remarkably low efficiency roll-off of 5% at 1000 cd m−2 as well as blue PhOLEDs (ICzCz) with a high PE of 26.1 lm W−1 have been realized. Hence, the first comprehensive report on the application of ICz as integral building block for electroluminescent materials is presented, establishing this particular structural motive as versatile structural motive in this field.  相似文献   

14.
Solid and flexible electrochromic (EC) devices require a delicate design of every component to meet the stringent requirements for transparency, flexibility, and deformation stability. However, the electrode technology in flexible EC devices stagnates, wherein brittle indium tin oxide (ITO) is the primary material. Meanwhile, the inflexibility of metal oxide usually used in an active layer and the leakage issue of liquid electrolyte further negatively affect EC device performance and lifetime. Herein, a novel and fully ITO-free flexible organic EC device is developed by using Ag–Au core–shell nanowire (Ag–Au NW) networks, EC polymer and LiBF4/propylene carbonate/poly(methyl methacrylate) as electrodes, active layer, and solid electrolyte, respectively. The Ag–Au NW electrode integrated with a conjugated EC polymer together display excellent stability in harsh environments due to the tight encapsulation by the Au shell, and high area capacitance of 3.0 mF cm−2 and specific capacitance of 23.2 F g−1 at current density of 0.5 mA cm−2. The device shows high EC performance with reversible transmittance modulation in the visible region (40.2% at 550 nm) and near-infrared region ( − 68.2% at 1600 nm). Moreover, the device presents excellent flexibility ( > 1000 bending cycles at the bending radius of 5 mm) and fast switching time (5.9 s).  相似文献   

15.
Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self-powered neuron system-like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system-like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual-modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self-powered ionic skin for multi-application scenarios.  相似文献   

16.
Stretchable ionic conductors such as hydrogels and ionic-liquid-based gels (aka ionogels) have garnered great attention as they enable the development of soft ionotronics. Notably, soft ionotronic devices inevitably operate in humid environments or under mechanical loads. However, many previously reported hydrogels and ionogels, however, are unstable in environments with varying humidity levels owing to hydrophilicity, and their liquid components (i.e., ionic liquid, water) may leak easily from polymer matrices under mechanical loads, causing deterioration of device performance. This work presents novel hydrophobic ionogels with strong ionic liquid retention capability. The ionogels are ambiently and mechanically stable, capable of not absorbing moisture in environments with high relative humidity and almost not losing liquid components during long periods of mechanical loading. Moreover, the ionogels exhibit desirable conductivity (10−4–10−5 S cm−1), large rupturing strain (>2000%), moderate fractocohesive length (0.511.03 mm), and wide working temperature range (−60 to 200 °C). An ionic skin is further designed by integrating the concept of sensory artificial skins and triboelectric nanogenerators, which can convert multiple stimuli into various types of signals, including resistance, capacitance, short-circuit current, and open-circuit voltage. This work may open new avenues for the development of soft ionotronics with stable performance.  相似文献   

17.
Hydrogels that are both highly conductive and mechanically robust have demonstrated great potential in various applications ranging from healthcare to soft robotics; however, the creation of such materials remains an enormous challenge. This study presents an in situ synthesis strategy for developing bioinspired chemically integrated silica-nanofiber-reinforced hydrogels (SFRHs) with robust mechanical and electronic performance. The strategy is to synthesize soft hydrogel matrices from acrylamide monomers in the presence of well-dispersed silica nanofibers and vinyl silane, which generates homogenous SFRHs with innovative interfacial chemical bonds. The resultant SFRHs exhibit excellent mechanical properties including high mechanical strength of 0.3 MPa at a fracture strain of 1400%, high Young's modulus of 0.11 MPa (comparable to human skin), and superelasticity over 1000 tensile cycles without plastic deformation, while maintaining high transmittance (≥83%). In parallel, the SFRHs show enhanced ionic conductivity (3.93 S m−1) and can monitor multiple stimuli (stretching, compressing, and bending) with high sensitivity (gauge factor of 2.67) and ultra-durability (10 000 cycles). This work may shed light on the design and development of tough and stretchable hydrogels for various applications.  相似文献   

18.
To realize wearable displays and interactive soft robots, significant research efforts are focused on developing highly deformable alternating-current electroluminescent (ACEL) devices. Although soft emission layers are well developed, designing stretchable, conductive, and transparent soft electrodes remains challenging. In this study, ionic hydrogels are prepared comprising a double network (DN) of poly(N-hydroxyethylacrylamide-co-acrylamide)/crosslinked chitosan swollen in aqueous lithium bis(trifluoromethanesulfonyl) imide. Owing to the finely tuned DN structure of the polymeric crosslinker and transparent electrolyte, the developed ionic hydrogels exhibit remarkable stretchability (1400%), excellent optical transmittance (>99%), and high conductivity (1.95 × 10−2 Sm−1). Based on the high performance of the ionic hydrogels, ACEL devices are fabricated with an emission layer containing phosphor microparticles and demonstrate stable, high luminance under extreme deformation, and ultra-high elongation. The excellent transparency of the ionic hydrogel further enables the fabrication of novel soft ACEL devices with tandem structures by stacking several emission and electrode layers, in which each emission layer is independently controlled with a switch circuit.  相似文献   

19.
Smart materials with coupled optical and mechanical responsiveness to external stimuli, as inspired by nature, are of interest for the biomimetic design of the next generation of soft machines and wearable electronics. A tough polymer that shows adaptable and switchable mechanical and fluorescent properties is designed using a fluorescent lanthanide, europium (Eu). The dynamic Eu‐iminodiacetate (IDA) coordination is incorporated to build up the physical cross‐linking network in the polymer film consisting of two interpenetrated networks. Reversible disruption and reformation of Eu‐IDA complexation endow high stiffness, toughness, and stretchability to the polymer elastomer through energy dissipation of dynamic coordination. Water that binds to Eu3+ ions shows an interesting impact simultaneously on the mechanical strength and fluorescent emission of the Eu‐containing polymer elastomer. The mechanical states of the polymer, along with the visually optical response through the emission color change of the polymer film, are reversibly switchable with moisture as a stimulus. The coupled response in the mechanical strength and emissive color in one single material is potentially applicable for smart materials requiring an optical readout of their mechanical properties.  相似文献   

20.
Soft gels with high toughness have drawn tremendous attention recently due to their potential applications in flexible electronic fields. The miniaturization and high-power density of electronic devices require soft gels with both high toughness and low thermal resistance; however, it is difficult to achieve these properties simultaneously. Herein, a simple design strategy is reported for constructing soft (high stretchability of 6.91 and low Young's modulus of 340 kPa), tough (4741.48 J m−2) and thermal conductive (low thermal resistance of 0.14 cm2 K W−1, under 10 psi pressure) polydimethylsiloxane/aluminum composite gel. This is realized by precisely lengthening polymer strands between the chemical cross-linked points and controlling the aluminum content in the composite gels. The symbiosis of this combination involves: lengthening the polymer strands facilitates its unfolding to increase the softness and intrinsic toughness; the thermally conductive spherical aluminum enables low thermal resistance and increases the intrinsic toughness and stress dissipation. By utilizing this gel as a thermal interface material, effective heat dissipation is demonstrated in electronic devices operating under high-power conditions over numerous cycles. These results demonstrate the application potential of composite gels in meeting the performance maintenance and heat dissipation, which are needed for modern electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号