首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traffic engineering in backbone networks is an important issue in supporting an appropriate QoS level to accommodate various types of traffic flows efficiently. Automatically switched optical networks and generalized multiprotocol label switching control planes are promising functionalities to achieve the sophisticated mechanism of interdomain traffic engineering. In this article we address dynamic operational scenarios to control IP traffic flows using the ASON/GMPLS control plane. This includes cut-through IP/MPLS routers and the rerouting of failed links through the tunnel of optical label-switched paths. This article presents an operational evaluation of traffic engineering. More specifically, we present QoS recovery for protecting high priority traffic using policy controllers and fault recovery of inter-domain LSPs over the JGN II network testbed. This article evaluates and discusses the feasibility of these operational scenarios using state-of-the-art optical switching and control- plane technologies.  相似文献   

2.
Integration of multiprotocol label switching functions and multiprotocol lambda switching functions can enhance the throughput of IP networks and remove bottlenecks that are derived from electrical packet processing. To enhance the packet forwarding capability, NTT proposed a photonic MPLS concept that includes MP/spl lambda/S, and demonstrated IP, MPLS, and photonic MPLS integrated router systems called the photonic MPLS router. This router system is now called the Hikari router. The word Hikari is Japanese meaning beam, light, lightwave, optical, photonic, and sunshine. The amount of IP data traffic has grown remarkably. Massive IP routers and flexible route control mechanisms are now required to cope with the increased amount of traffic. The Hikari router can offer two solutions utilizing photonic switching technologies, and photonic network operation and management technologies. The first solution is utilizing photonic switching technologies realized using optical-switch-based crossconnect systems. The other solution is realized using the MPLS and MP/spl lambda/S signaling protocol and photonic network protection functions. In this article we report on the implementation of the Hikari router systems, propose a newly developed disjoint path selection scheme for generalized MPLS networks with shared risk link group constraints, and demonstrate the signaling protocol and network protection functions. The demonstration system achieves a distributed optical path set-up/tear-down protocol with an extended constraint-based routing label distribution protocol. Fast self-healing through automatic protection switching and a new restoration scheme are also implemented. These functions are successfully implemented, and the performance is verified on a demonstration network. The protection switching scheme achieves protection in less than 20 ms, and the optical path restoration scheme achieves restoration in less than 500 ms.  相似文献   

3.
As service providers move more applications to their IP/MPLS (multiple protocol label switching ) backbone networks, rapid restoration upon failure becomes more and more crucial. Recently MPLS fast reroute has attracted lots of attention as it was designed to meet the needs of real-time applications, such as voice over IP. MPLS fast reroute achieves rapid restoration by computing and signaling backup label switched path (LSP) tunnels in advance and re-directing traffic as close to failure point as possible. To provide a guarantee of bandwidth protection, extra bandwidth has to be reserved on backup paths. Using path merging technique as described in IETF RFC 4090 only, the network is able to share some bandwidth on common links among backup paths of the same service LSP, i.e., so-called intra-sharing. But no solution is provided on how to share bandwidth among backup paths of different service LSPs, i.e., so-called inter-sharing. In this paper, we provide an efficient distributed bandwidth management solution. This solution allows bandwidth sharing among backup paths of the same and different service LSPs, i.e., both intra-sharing and inter-sharing, with a guarantee of bandwidth protection for any single node/link failure. We also propose an efficient algorithm for backup path selection with the associated signaling extensions for additional information distribution and collection. To evaluate our schemes, we compare them via simulation with the basic MPLS fast reroute proposal, IETF RFC 4090, on two networks. Our simulation results show that using our bandwidth management scheme can significantly reduce restoration overbuild from about 250% to about 100%, and our optimized backup path selection can further reduce restoration overbuild to about 60%.  相似文献   

4.
We propose and investigate three connection admission control policies for the establishment of label switched paths (LSPs) in IP/MPLS over optical networks. We show that the policy of establishing LSPs first in the optical layer achieves a better blocking performance. We examine the effect of the number of add/drop ports of optical cross-connects (OXCs) on the LSP blocking performance. We show that there exists a lower bound for the number of add/drop ports of OXCs for the network to achieve almost the best LSP blocking performance.  相似文献   

5.
A preplanned path-protection scheme with sufficient spare bandwidth is appropriate for real-time fault restoration in multiprotocol label switching (MPLS) networks. In this case, however, it is important to reduce the amount of spare bandwidth to prevent degradation of network efficiency. A distributed label switched path (D-LSP) scheme is proposed to reduce the amount of spare bandwidth required for protecting against network faults in MPLS networks. The main idea of the proposed D-LSP scheme is to partition traffic into multiple LSPs, each of which is established on a distinct link-disjoint route between each pair of end nodes. The D-LSP scheme is evaluated in terms of the reduction ratio of total network cost in comparison with the conventional LSP scheme. Traffic partitioning in the D-LSP scheme can decrease the statistical multiplexing gain (SMG) obtained by aggregating IP packet flows into an LSP. The tradeoff between spare bandwidth reduction and degradation of SMG due to traffic partitioning is also investigated. The numerical results show that the proposed D-LSP scheme yields the network cost-reduction ratio (NCRR) of at least 29%, 27%, and 15% for the networks where average node degrees are 4.6, 4.4, and 3.2, respectively. The D-LSP scheme shows the similar performance of NCRR in both Markovian traffic and self-similar traffic environments.  相似文献   

6.
MPLS and traffic engineering in IP networks   总被引:5,自引:0,他引:5  
Rapid growth and increasing requirements for service quality, reliability, and efficiency have made traffic engineering an essential consideration in the design and operation of large public Internet backbone networks. Internet traffic engineering addresses the issue of performance optimization of operational networks. A paramount objective of Internet traffic engineering is to facilitate the transport of IP traffic through a given network in the most efficient, reliable, and expeditious manner possible. Historically, traffic engineering in the Internet has been hampered by the limited functional capabilities of conventional IP technologies. Recent developments in multiprotocol label switching (MPLS) and differentiated services have opened up new possibilities to address some of the limitations of the conventional technologies. This article discusses the applications of MPLS to traffic engineering in IP networks  相似文献   

7.
Migration strategies for the network control infrastructure are discussed, to evolve carrier networks toward an optical transport backbone optimized for IP traffic. The strategies presented aim to protect carriers' investments in their current multiservice and IP-routed networks, while expediting the backbone migration toward a unified packet-over-optical core for IP and multiservice transport. This unified core network simplifies the network layers and control systems, and consolidates data and multiservice traffic to reduce network cost with improved bandwidth efficiency. The network control system, including signaling, addressing, and routing, is analyzed in detail to demonstrate the feasibility of the proposed infrastructure. Built on multiprotocol label switching (MPLS) technology, the presented solutions take phased evolution steps to reduce network cost, improve bandwidth efficiency, and offer practical options for internetworking during the migration. These solutions provide carriers with competitive advantages to consolidate multiple services onto an IP-centric optical transport network. The unified control infrastructure not only offers flexible options for network upgrade with reduced network management overhead, but also supports enhanced networking and traffic engineering capabilities to ensure no compromise in the service level agreement committed to end customers.  相似文献   

8.
In MPLS (Multi-Protocol Label Switching) over optical networks, both the optical level and the MPLS level fault recovery can be considered. Generally, a more flexible path arrangement can be realized by the MPLS level recovery, while fast recovery can be achieved by the optical level recovery. When the optical level recovery is adopted, only normal traffic is carried through the working lightpaths and only recovered traffic is carried through the backup lightpaths. In contrast, the working LSPs (Label-Switched Paths) and the backup LSPs corresponding to other working LSPs can be accommodated into an identical lightpath when the MPLS level recovery is adopted. By such sophisticated accommodation of LSPs into the lightpaths, lightpath bandwidth can be utilized efficiently under the condition that the bandwidth utilization is restricted to attain the given objective of transfer quality for the MPLS packets in the normal state and unrestricted in a short time a failure occurs somewhere in the network. This paper proposes a simple mathematical programming model to obtain the optimum arrangement of the working and backup LSPs assuming the MPLS level recovery and a practical LSPs provisioning mode. By comparing the minimized network cost obtained from the optimum arrangement of the working and backup LSPs with the network cost resulting from the optical level recovery, this paper quantitatively evaluates the effectiveness of such bandwidth utilization improvement obtained from the MPLS level recovery and reveals that the MPLS level recovery can actually reduce the network cost due to its flexible arrangement of LSPs on the lightpaths.  相似文献   

9.
Protection approaches for dynamic traffic in IP/MPLS-over-WDM networks   总被引:3,自引:0,他引:3  
Due to the explosive growth of data-related traffic driven by the Internet, network reliability becomes an important issue. We investigate various protection approaches to handle failures for dynamic traffic demands in IP/MPLS-over-WDM networks. An LSP can be protected at either the IP/MPLS layer or the optical layer. In IP/MPLS layer protection, an LSP is protected by providing a link-disjoint backup LSP between its end nodes. In optical layer protection, an LSP is protected by the backup lightpath of each lightpath traversed by the LSP. We present two integrated routing algorithms: hop-based integrated routing algorithm and bandwidth-based integrated routing algorithm (BIRA) to set up the restorable bandwidth-guaranteed paths efficiently. Then we present a multilayer protection scheme for multiclass traffic in such networks. This scheme takes into account the different QoS and recovery requirements of the traffic to provide protection capability either at the MPLS layer or at the optical layer in a cost-effective manner. We use the connection blocking probability and number of optical-electrical-optical conversions as performance metrics to compare various protection approaches.  相似文献   

10.
MPLS Recovery Mechanisms for IP-over-WDM Networks   总被引:2,自引:0,他引:2  
Due to the fast increase of Internet traffic and the enormous bandwidth potential of all-optical transport networks based on wavelength division multiplexing, an IP-over-WDM network scenario is likely to be widespread in future communication networks. At the same time, IP networks are becoming more and more mission-critical. Hence, it is of paramount importance for IP-over-WDM networks to be able to recover quickly from frequently occurring network failures. This paper explains how multi-protocol label switching (both electrical and optical) recovery mechanisms can be important to reach that goal. Moreover, a novel MPLS recovery mechanism called fast topology-driven constrained-based rerouting is presented. Different MPLS recovery mechanisms are compared to each other. Special attention hereby goes to the additional capacity that is required to recover from frequently occurring failures.  相似文献   

11.
In this paper, we present a new Quality of Service (QoS) routing model for Differentiated Services (Diffserv) over Multiprotocol Label Switching (MPLS) networks. We use a pre-established multi-path model in which several MPLS label switching paths (LSPs) are established between each ingress-egress router pair in advance. Ingress routers perform per-request admission control and bulk-type resource reservation based on the resource availability on the associated LSPs. We use a utilization-based dynamic load balancing scheme to increase resource utilization across LSPs. The proposed model increases signaling and state scalability in the network core. It also provides hard QoS guarantees and minimizes admission control time. The experimental results verify the achievements of our model under various network topologies and traffic conditions.  相似文献   

12.
用MPLS技术实现IP over WDM   总被引:2,自引:0,他引:2  
提出了一种全新的高速宽带组网技术-基于MPLS的IPoverWDM网络技术,并对其进行了深入研究。这个方案在光联网技术中综合了目前先进的MPLS流量工程控制技术,特别适合于由可重构的OADM和OXC组成的以数据业务为核心的互联网络系统,而且它为最终在IP路由器上直接提供WDM复用功能铺平了道路。  相似文献   

13.
RATES: a server for MPLS traffic engineering   总被引:1,自引:0,他引:1  
It has been suggested that one of the most significant reasons for multiprotocol label switching (MPLS) network deployment is network traffic engineering. The goal of traffic engineering is to make the best use of the network infrastructure, and this is facilitates by the explicit routing feature of MPLS, which allows many of the shortcomings associated with current IP routing schemes to be addressed. This article describes a software system called Routing and Traffic Engineering Server (RATES) developed for MPLS traffic engineering. It also describes some new routing ideas incorporated in RATES for MPLS explicit path selection. The RATES implementation consists of a policy and flow database, a browser-based interface for policy definition and entering resource provisioning requests, and a Common Open Policy Service protocol server-client implementation for communicating paths and resource information to edge routers. RATES also uses the OSPF topology database for dynamically obtaining link state information. RATES can set up bandwidth-guaranteed label-switched (LSPs) between specified ingress-egress pairs. The path selection for LSPs is on a new minimum-interference routing algorithm aimed at making the best use of network infrastructure in an online environment where LSP requests arrive one by one with no a priori information about future requests. Although developed for an MPLS application, the RATES implementation has many similarities in components to an intradomain differentiated services bandwidth broker  相似文献   

14.
Issues on loop prevention in MPLS networks   总被引:6,自引:0,他引:6  
In multiprotocol label switching (MPLS) networks, data packets are forwarded through label-switched paths (LSPs) which are set up using a label distribution protocol. Since any label distribution protocol makes use of information obtained from the layer 3 routing protocol, and the routing protocol may not be loop-free, there is a possibility of an LSP forming a loop. This article focuses on MPLS loop prevention by which LSPs are prevented from forming loops. Especially, two loop prevention algorithms that have been proposed to the IETF are simulated to investigate the number of control messages required for setting up or reconfiguring LSPs over an actual routing protocol  相似文献   

15.
Next generation backbone networks will likely consist of IP routers as well as optical cross connects (OXCs) and will deploy an optical control plane protocol. Generalized Multi Protocol Label Switching (GMPLS) has been proposed as the candidate of choice for the control plane. Optical fibers may carry large volumes of traffic and therefore adequate mechanisms must exist to enable the network to automatically recover from failures of fiber. In mission critical networks survivability becomes very important. We investigate the problem of autonomous recovery in such networks. The literature contains work in this area that investigates the problem of multilayer recovery. Such recovery had only been sequential in the sense that the published work recovers first in the optical domain, assuming the availability of redundant resources, and then proceeds to recover packet label switched paths. We report a recovery procedure for recovering packet label switch paths (packet LSPs) and lambda label switch paths (λLSP) concurrently. We have conducted an OPNET-based simulation study that compares the performance of the concurrent scheme with the previously published sequential two-layer recovery scheme. The study shows that the concurrent two-layer recovery scheme performs as much as forty-four percent faster than the sequential two-layer recovery scheme.  相似文献   

16.
A new extended signaling and traffic engineering method for the GMPLS-based photonic and electrical multilayer router (Hikari router) is proposed. The method allows dynamic optical network management and photonic signal recovery, such as regeneration, reshaping, etc., to be realized adaptively. Wavelength conversion is also adaptive, which reduces network cost. Multilayer traffic engineering, which yields the dynamic cooperation of IP and photonic layers, is described to provide IP services cost effectively. To realize multilayer traffic engineering, we propose the OSPF extension, which advertises both the number of total wavelengths and the number of unused wavelengths, and the RSVP-TE extension, which minimizes the number of wavelength conversions needed. In addition, this paper proposes a heuristics-based multilayer topology design scheme that uses IP traffic measurements in a generalized multi-protocol label switch (GMPLS). The proposed scheme yields the optical label switch path (OLSP) network topology, that is, OLSP placement, that minimizes network cost, in response to fluctuations in IP traffic demand. In other words, the OLSP network topology is dynamically reconfigured to match IP traffic demand. Networks are reconfigured by the proposed scheme so as to utilize network resources in the most cost effective manner  相似文献   

17.
We study the connection establishment of label switched paths (LSPs), and compare the LSP blocking performance of the overlay and peer models in IP/MPLS over optical networks. We consider two dynamic routing algorithms for the establishment of LSP connections, of which one is for the overlay model and the other is for the peer model. Our investigations on two typical network topologies, namely NSFNET and ARPA2 networks, show that the number of add/drop ports (or transceivers) on optical cross-connects (OXCs) has a significant impact on the LSP blocking performance for both models. We show by computer simulation that in each case, there is a threshold value for the add/drop ratio, which can achieve almost the best blocking performance. This threshold value remains virtually unchanged as the traffic load varies, but it does depend on the network topology and the number of wavelengths per fiber. This will then indicate the number of add/drop ports to be used so that one can achieve a near optimal blocking performance without incurring unnecessarily excessive network costs. Our investigations reveal that the peer model achieves a much better blocking performance than the overlay model when the number of add/drop ports is relatively high, but that this is not always true when the number of add/drop ports is small.  相似文献   

18.
We present a new traffic engineering (TE) model which is based on QoS rerouting and uses hybrid resilience to improve the recovery performance of multi-layer networks where an MPLS network is layered above an MPlambdaS network. We formulate the rerouting of the LSPs/lambdaSPs as a multi-constrained problem and use its polynomial reduction to find a heuristic solution that can be implemented by standardized constraint-based routing algorithms. This heuristic solution uses a cost-based routing optimization to achieve different network configurations which multiplex/separate bandwidth-aware LSPs/lambdaSPs on the network links. We formulate the resilience upon failure as a multi-objective problem consisting of finding a resilience strategy that minimizes recovery operation time and maximizes the LSP/lambdaSP restorability. A solution to this problem is proposed where a hybrid resilience framework is used to achieve restoration in the MPLS layer to complement path switching in the MPlambdaS layer. We evaluate the performance of the TE model when rerouting the tunnels carrying the traffic offered to a 23- and 31-node networks. Simulation reveals that the hybrid resilience model performs better than classical recovery mechanisms. In terms of restorability, quality of rerouting paths and rerouting stability  相似文献   

19.
This paper proposes and analyzes a strategy for protection and restoration of optical paths in wavelength division multiplexing (WDM) networks for next-generation Internet infrastructure. Assuming a network model in which a multiprotocol label switching (MPLS) layer is overlaid on top of a WDM layer, and a segregation of the traffic on a wavelength basis, the strategy is based on a network dimensioning aiming at: 1) the support of different types of traffic, relating to different service categories; 2) the guarantee that all the wavelength paths carrying mission-critical services (with stringent quality of service requirements) are protected against failure; and 3) the possibility of restoring a large amount of wavelength paths carrying Internet best-effort services, i.e., low-priority (LP) preemptible traffic with no QoS requirements. The reference network scenario is an overlay model in which the optical network interacts with an MPLS network with a separated control plane; the optical network manages its resources to better serve the traffic coming from the MPLS network. Two path protection schemes, namely, disjoint path (DP) and single-link basis (SLB), and a link protection mechanism, namely, local repair (LP), are investigated. Furthermore, the paper considers both the case of using wavelength conversion in the optical nodes and the case in which wavelength conversion is not used at all. The analysis compares the performance of the different strategies in terms of the percentage of optical paths carrying LP traffic not served by the optical network after a failure and of the dimensions of the optical nodes for all the schemes. The analysis reveals that the proposed approach allows the restoration of a large amount of best-effort traffic with a reasonable increase of network redundancy.  相似文献   

20.
This paper presents a new technology for constructing IP over photonic systems. An IP with multiprotocol label switching (MPLS) over wavelength division multiplexing (WDM)-based broad-band IP network architecture and protocol is proposed and analyzed in this paper, which supports variable-length IP-like optical packet label switching and optical virtual path routing. This system tries to merge into one layer the functionalities of the wavelength switching, SONET mux/demux, and IP routing, and is sometimes known as the concept of optical MPLS. The label banding, forwarding/switching process, and node architecture of the proposed network are discussed and studied. A unique as well as important function of a lambda/label edge router (LER) is a flow assembly device that can encompass MPLS' forward equivalence classes, label stacking, and label switching path aggregation function. At the same time, a particular function of the core label switching router is wavelength merging. A fiber delay line is used to delay the data stream in order to process the label information and resolve contention. Transmission bit error rate measurements of the baseband data stream and back-to-back is also demonstrated to show its feasibility  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号