首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
A remote plasma chemical vapor deposition (RPCVD) of SiO2 was investigated for forming an interface of SiO2/Si at a low temperature below 300°C. A good SiO2/Si interface was formed on Si substrates through decomposition and reaction of SiH4 gas with oxygen radical by confining plasma using mesh plates. The density of interface traps (Dit) was as low as 3.4×1010 cm-2eV-1. N- and p-channel Al-gate poly-Si TFTs were fabricated at 270°C with SiO2 films as a gate oxide formed by RPCVD and laser crystallized poly-crystalline films formed by a pulsed XeCl excimer laser. They showed good characteristics of a low threshold voltage of 1.5 V (n-channel) and -1.5 V (p-channel), and a high carrier mobility of 400 cm2/Vs  相似文献   

2.
We present novel ultrathin (EOT = 2.1 nm) atomic-layer-deposited (ALD) Si-nitride/SiO2 stack gate dielectrics annealed in NH 3 at a moderate temperature of 550°C. MOS capacitors are fabricated using the proposed dielectrics. Excellent performance in electrical stressing experiments is shown by the dielectrics. They also exhibit better interface quality, low bulk-trap density, low trap generation rate, and high long-term reliability in comparison with ALD Si-nitride/SiO2 stack dielectrics without NH3-annealing and conventional thermal SiO2 dielectrics. The proposed stack-gate dielectrics appear to be very promising for ULSI devices  相似文献   

3.
The authors report that the boron penetration through the thin gate oxide into the Si substrate does not only cause a large threshold voltage shift but also induces a large degradation in the Si/SiO2 interface. An atomically flat Si/SiO2 interface can be easily obtained by using a stacked-amorphous-silicon (SAS) film as the gate structure for p+ poly-Si gate MOS devices even with the annealing temperature as high as 1000°C  相似文献   

4.
This paper presents a study of the impact of gate-oxide N2 O anneal on CMOSFET's characteristics, device reliability and inverter speed at 300 K and 85 K. Two oxide thicknesses (60 and 110 Å) and five N2O anneal conditions (900~950°C, 5~40 min) plus nonnitrided process and channel lengths from 0.2 to 2 μm were studied to establish the correlation between the nitrogen concentration at Si/SiO2 interface and the relative merits of the resultant devices. We concluded that one simple post-oxidation N2O anneal step can increase CMOSFET's lifetime by 4~10 times, effectively suppress boron penetration from the P+ poly-Si gate of P-MOSFET's without sacrificing CMOS inverter speed. We also found that the benefits in terms of the improved interface hardness and charge trapping characteristic still exist at cryogenic temperature. All these improvements are found to be closely correlated to the nitrogen concentration incorporated at the Si/SiO2 interface. The optimal N2O anneal occurs somewhere at around 2% of nitrogen incorporation at Si/SiO2 interface which can be realized by annealing 60~110 Å oxides at 950°C for 5 min or 900°C for 20 min  相似文献   

5.
Advances in lithography and thinner SiO2 gate oxides have enabled the scaling of MOS technologies to sub-0.25-μm feature size. High dielectric constant materials, such as Ta2O5 , have been suggested as a substitute for SiO2 as the gate material beyond tox≈25 Å. However, the Si-Ta 2O5 material system suffers from unacceptable levels of bulk fixed charge, high density of interface trap states, and low silicon interface carrier mobility. In this paper we present a solution to these issues through a novel synthesis of a thermally grown SiO2(10 Å)-Ta2O5 (MOCVD-50 Å)-SiO2 (LPCVD-5 Å) stacked dielectric. Transistors fabricated using this stacked gate dielectric exhibit excellent subthreshold behaviour, saturation characteristics, and drive currents  相似文献   

6.
Graded gate oxide process involves a two-step synthesis of growing an oxide at a temperature above the viscoelastic temperature (TVE ) onto a pregrown low temperature thermally grown SiO2 layer to form a composite graded SiO2 structure. The cooling rate is carefully modulated near TVE~925°C to enhance growth induced stress relaxation. The pregrown SiO2 layer provides grading and is a sink for stress accommodation for the final high temperature SiO2 forming the interface. Both grading and modulated cooling generate a strain-free and planar Si/SiO2 interface. Such an interface delivers significant enhancement in all aspects of device reliability and performance. These oxides are of very high-quality, robust, and manufacturable with a process capability index, Cpk>1.5. Graded gate oxide is already in the primary path of our 0.16 μm and 0.12 μm technologies  相似文献   

7.
It has been reported that high-temperature (~1100°C) N2 O-annealed oxide can block boron penetration from poly-Si gates to the silicon substrate. However, this high-temperature step may be inappropriate for the low thermal budgets required of deep-submicron ULSI MOSFETs. Low-temperature (900~950°C) N2O-annealed gate oxide is also a good barrier to boron penetration. For the first time, the change in channel doping profile due to compensation of arsenic and boron ionized impurities was resolved using MOS C-V measurement techniques. It was found that the higher the nitrogen concentration incorporated at Si/SiO2 interface, the more effective is the suppression of boron penetration. The experimental results also suggest that, for 60~110 Å gate oxides, a certain amount of nitrogen (~2.2%) incorporated near the Si/SiO2 interface is essential to effectively prevent boron diffusing into the underlying silicon substrate  相似文献   

8.
The effects of minute amounts of impurities (H, OH, and F) in SiO 2 are investigated to obtain a guideline for improving the reliability of MOS devices. To examine the behavior of hydrogen, deuterium (D) is adopted as a tracer. The quantity of deuterium dissolved in SiO2 is measured by the D(3He,p)4He nuclear resonant reaction (NRR) technique. The Influence of the impurities on the SiO2-Si interface structure is studied by electron spin resonance (ESR) measurement. Hot-carrier injection with MOS capacitors and transistors are examined to determine the effects of minute impurities on the electrical characteristics of gate SiO2 and the correlation of this effect with the NRR and ESR experimental results. It was found that significant amounts of D2O are diffused into SiO2 , even at 200°C, and these dissolved D2O molecules are eliminated at temperatures above 700°C. The number of unpaired bonds at the interface increases with decrease of dissolved water in SiO 2. The disappearance of the interface traps after high-temperature annealing above 800°C is thought to be due to the viscous flow of SiO2 and to the interface reoxidation. Reducing the hydrogen and relaxing the interface strain are essential for improving the MOS device endurance against hot carriers  相似文献   

9.
The ability of thin reoxidized nitrided oxide (ONO) gate dielectrics formed by rapid thermal processing to act as a barrier to boron penetration resulting from p+ poly gate processing are investigated. Measurements comparing the threshold voltage instability of capacitors fabricated with BF2 implanted poly gates subjected to various postgate thermal cycles have been performed. The ONO gate dielectrics are found to be an excellent impurity barrier to boron diffusion, even in the presence of fluorine. The extent of the nitridation is also found to affect the diffusion barrier properties, with the highest temperature nitridations forming the best barriers. Reoxidation of the nitrided films reduces the barrier properties somewhat, but improvement is still observed over SiO2  相似文献   

10.
By optimizing the inductively coupled plasma (ICP) oxidation condition, a thin oxide of 10 nm has been grown at 350°C to achieve excellent gate oxide integrity of low leakage current<5×10-8 A/cm2 (at 8 MV/cm), high breakdown field of 9.3 MV/cm and low interface trap density of 1.5×1011 /eV cm2. The superior performance poly-Si TFTs using such a thin ICP oxide were attained to achieve a high ON current of 110 μA/μm at VD=1 V and VG=5 V and the high electron field effect mobility of 231 cm2/V·S  相似文献   

11.
A systematic study of post-metallization annealing (PMA) effect on the quality of thermal SiO2 on p-type 6H- and 4H-SiC has been carried out. A simultaneous quasi-static hi-lo frequency capacitance-voltage method has been employed to measure the total effective oxide charge (Neff) and interface state density (D it). To ensure accurate results, Dit was measured at 350°C which, depending on the hole capture cross sections, should enable the measurement of interface states located in the band gap as deep as 1.3-1.5 eV from the valence band edge. The dependence of Neff and Dit on annealing temperature and ambient as well as the effect of thermal and sputtered gate metal on the oxide quality are reported. It is shown that Neff values close to the detection limit due to the uncertainty in SiC electron affinities and Dit values below 1×1011 cm-2/eV deep in the band gap can be reproducibly obtained for both p-type 6H- and 4H-SiC  相似文献   

12.
Based on a network defect model for the diffusion of B in SiO2 we propose that B diffuses via a peroxy linkage defect whose concentration in the oxide changes under different processing conditions. We show that as the gate oxide is scaled below 80 Å in thickness, additional chemical processes act to increase B diffusivity and decrease its activation energy, both as a function of the distance from the Si/SiO2 interface. For a 15 Å oxide, the B diffusivity at 900°C would increase by a factor of 24 relative to diffusion in a 100 Å oxide  相似文献   

13.
The hot carrier degradation at 77 K of silicon MOSFETs fabricated with reoxidized nitrided oxide (ONO) gate dielectrics has been investigated. Measurements have been performed at both room and LN2 temperatures on n-channel FETs for both ONO and conventional SiO 2 films. It is found that the hot-carrier immunity of ONO transistors is substantially larger than that of conventional SiO2 devices, and that the degree of improvement is much larger at room temperature that an 77 K. While the interface state generation does increase dramatically as a result of 77-K stressing, the dominant degradation mechanism can be attributed to a large increase in the drain resistance of the device due to localized charge trapping at the drain side of the channel  相似文献   

14.
The electrical characteristics of a novel HfTaON/SiO2 gate stack, which consists of a HfTaON film with a dielectric constant of 23 and a 10-Aring SiO2 interfacial layer, have been investigated for advanced CMOS applications. The HfTaON/SiO2 gate stack provided much lower gate leakage current against SiO2 , good interface properties, excellent transistor characteristics, and superior carrier mobility. Compared to HfON/SiO2, improved thermal stability was also observed in the HfTaON/SiO2 gate stack. Moreover, charge-trapping-induced threshold voltage V th instability was examined for the HfTaON/SiO2 and HfON/SiO2 gate stacks. The HfTaON/SiO2 gate stack exhibited significant suppression of the Vth instability compared to the HfON/SiO2, in particular, for nMOSFETs. The excellent performances observed in the HfTaON/SiO2 gate stack indicate that it has the potential to replace conventional SiO2 or SiON as gate dielectric for advanced CMOS applications  相似文献   

15.
叶伟  崔立堃  常红梅 《电子学报》2019,47(6):1344-1351
具有高介电常数的栅绝缘层材料存在某种极化及耦合作用,使得ZnO-TFTs具有高的界面费米能级钉扎效应、大的电容耦合效应和低的载流子迁移率.为了解决这些问题,本文提出了一种使用SiO2修饰的Bi1.5Zn1.0Nb1.5O7作为栅绝缘层的ZnO-TFTs结构,分析了SiO2修饰对栅绝缘层和ZnO-TFTs性能的影响.结果表明,使用SiO2修饰后,栅绝缘层和ZnO-TFTs的性能得到显著提高,使得ZnO-TFTs在下一代显示领域中具有非常广泛的应用前景.栅绝缘层的漏电流密度从4.5×10-5A/cm2降低到7.7×10-7A/cm2,粗糙度从4.52nm降低到3.74nm,ZnO-TFTs的亚阈值摆幅从10V/dec降低到2.81V/dec,界面态密度从8×1013cm-2降低到9×1012cm-2,迁移率从0.001cm2/(V·s)升高到0.159cm2/(V·s).  相似文献   

16.
A drastic reduction in the growth temperature (400°C) of highly reliable SiO2 gate oxides grown by a Kr/O2 microwave-excited high-density plasma technique is shown to yield MOS I-V characteristics comparable to those obtained in transistors with conventionally grown dry gate oxides at 900°C. The benefits of this technique are summarized  相似文献   

17.
The performance of polysilicon thin-film transistors (TFTs) formed by a 600°C process was improved using a two-layer gate insulator of photochemical-assisted vapor deposition (photo-CVD) SiO2 and atmospheric-pressure chemical vapor deposition (APCVD) SiO2. The photo-CVD SiO2, 100 Å thick, was deposited on polysilicon and followed by APCVD SiO2 of 1000 Å thickness. The TFT had a threshold voltage of 8.3 V and a field-effect mobility of 35 cm2/V-s, which were higher than those of the conventional TFT with a single-layer gate SiO2 of APCVD. Hydrogenation by hydrogen plasma was more effective for the new TFT than for the conventional device  相似文献   

18.
High-performance polycrystalline Si (poly-Si) thin-film transistors (TFTs) were successfully fabricated on a glass substrate below 425°C by introducing defect control process technologies. The defects in the laser crystallized poly-Si films were terminated by an oxygen plasma treatment to the film and the defects at the SiO2 /Si interface were controlled by a gate SiO2 film formation using electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD). As a result, high n-channel mobility of 309 cm2V-1s-1, low threshold voltage of 1.12 V and low subthreshold swing of 250 mV/decade were obtained. In addition, it was demonstrated that the defect control process is quite effective to minimize the variation of TFT characteristics  相似文献   

19.
An ultra-thin, high reliability oxide-nitride-oxide (ONO) gate dielectric was formed using low pressure oxidation and chemical vapor deposition. A sub-0.25 μm device with high performance was fabricated for which the gate dielectric reliability was studied using both Fowler-Nordheim tunneling stress and hot carrier aging. The results from both techniques demonstrate that the device lifetime is longer than 100 years. Auger spectroscopy shows that there is about 9 at.% nitrogen at the SiO2/Si interface. However, no transconductance degradation is observed  相似文献   

20.
Electrical and reliability properties of ultrathin La2O 3 gate dielectric have been investigated. The measured capacitance of 33 Å La2O3 gate dielectric is 7.2 μF/cm2 that gives an effective K value of 27 and an equivalent oxide thickness of 4.8 Å. Good dielectric integrity is evidenced from the low leakage current density of 0.06 A/cm2 at -1 V, high effective breakdown field of 13.5 MV/cm, low interface-trap density of 3×1010 eV-1/cm2, and excellent reliability with more than 10 years lifetime even at 2 V bias. In addition to high K, these dielectric properties are very close to conventional thermal SiO2   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号