首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A 4-way set associative TagRAM with 1.189-Mb capacity has been developed which can handle a secondary cache system of up to 16 Mbytes. A 9-ns cycle operation and clock to Dout of 4.7 ns are achieved by use of circuit techniques such as a pipelined decoding scheme, a single PMOS load BiCMOS main decoder, a BiCMOS sense-amplifying comparator, doubly placed self-timed write circuits, and highly linear VCO for a PLL. The device is successfully implemented with 0.7-μm double polysilicon double-metal BiCMOS technology  相似文献   

2.
Described is a phase-locked loop (PLL)-based BiCMOS on-chip clock generator (PCG), which is used to generate an internal clock synchronized to a reference clock from outside the chip. In order to obtain a very wide operation bandwidth, it is proposed that the PCG include a compensation circuit for voltage-controlled oscillator (VCO) operation. The compensation circuit varies the oscillation bandwidth of the VCO according to the reference clock frequency, preventing the expected oscillation frequency from being outside the oscillation bandwidth. The PCG is designed and fabricated with 1.0 μm BiCMOS technology, and it achieves an operation bandwidth of 3 to 90 MHz  相似文献   

3.
针对参考时钟源高电平脉冲宽度窄(小于2 ns)和本底噪声大的问题,通过使用一种时钟低抖动整形技术方案,使参考时钟经过锁相整形后高电平脉冲宽度大于3 ns、锁相相位时间抖动均方根(RMS)值小于5 ps。目前该方案已成功用于星光III激光装置的联机实验,情况良好,对其他类似需要精密时钟的装置具有极大的借鉴意义。  相似文献   

4.
A 10-Gb/s CMU/CDR chip-set presenting multistandard compliance with SDH/SONET and 10-GbE specifications has been fabricated in a commercial SiGe BiCMOS technology. The clock multiplier unit (CMU) features dual reference clock frequency, and the phase tracking loop uses a charge pump with low common-mode current to minimize frequency ripple; the output jitter is below 80 mUIpp. The clock and data recovery (CDR) features a 20-mV-sensitivity limiting amplifier, a 2-DFF-based decision circuit to maximize clock phase margin (CPM) and a dual-loop phase-locked loop (PLL) architecture with external reference clock. A novel phase detector topology featuring a transition density factor compensation loop has been exploited to minimize jitter. Power consumption is 480 mW and 780 mW, respectively, for the two ICs, from 3.3-V and 2.5-V power supplies  相似文献   

5.
A custom 529 K-transistor microprocessor with a five-stage pipeline has been implemented on a 12.98-mm2 die. Employing BiCMOS macrocells, a 32-b execution unit, extensible ROM, RAM, a PLL (phase-locked loop) clock generator with bipolar drivers, and sense circuits, and a peak performance of 70 MIPS (million instructions per second) are achieved. Power consumption is 2.1 W at 40 MHz  相似文献   

6.
A 16-bit digitally controlled BiCMOS ring oscillator (DCO) is described. This BiCMOS DCO design provides improved frequency stability under thermal fluctuations. Simulations of a 5-stage DCO using 1μm BiCMOS process parameters achieved a controllable frequency range of 90-640MHz with a linear/quasi-linear range of around 300MHz. A tiny test chip was fabricated using MOSIS Orbit 2μm low-cost analogue CMOS process technology that provides a lateral NPN bipolar device option. Monotone frequency gain (frequency vs control-word transfer function) with fine stepping (tuning) over several kHz was verified experimentally, thus auguring the prospect of accurate frequency lock in an all-digital phase-locked loop (ADPLL) application. Worstcase jitter due to digital control transitions at pathological control-word boundaries for the BiCMOS DCO was observed to be less than 50 ps. This BiCMOS design would thus provide performance enhancement in PLL applications such as clock recovery and frequency synthesis.  相似文献   

7.
A new phase lock loop (PLL) is proposed and demonstrated for clock recovery from an ultrahigh-speed time-division multiplexed (TDM) optical signal. A traveling-wave laser-diode amplifier (TW-LDA) is used as a phase detector, and the cross-correlation component between the optical signal and an optical clock pulse train is detected as a four-wave-mixing (FWM) signal generated in the TW-LDA. A timing clock from a TDM signal is extracted as a prescaled electrical clock, and this prescaled clock is directly recovered from a randomly modulated TDM optical signal. A prescaled 6.3 GHz clock is successfully extracted from a 100 Gb/s signal using the timing comparison output obtained as the cross-correlation between the optical signal and a short (<10 ps) 6.3 GHz optical clock pulse train in the generated FWM light. A comparison of the PLL phase noise with a previously reported gain modulation method is also shown, and the possibility of the Tbit/s operation of this PLL is also considered in the experiments  相似文献   

8.
A highly linear and fully-integrated frequency-modulated continuous-wave (FMCW) generator based on a fractional-N phase-locked loop (PLL) that is able to synthesize modulation schemes in 57–64 GHz range is proposed in this paper. The fractional-N PLL employs Colpitts voltage-controlled oscillator (VCO) at 60 GHz with 13.5% tuning range. Automatic amplitude and frequency calibrations are implemented to avoid drifts due to process, voltage and temperature variations and to set the center frequency of the VCO. Five-stage multi-modulus divider is used for division ratio switching, controlled by the sigma-delta (\(\Sigma \Delta\)) modulator MASH 1-1-1. The frequency sweep (chirp) bandwidth and duration are fully programmable via serial peripheral interface allowing up to 16 different chirps in complex modulation scheme. The PLL reference signal is 250 MHz provided by external low-noise signal generator which is also used for digital modules clock. The overall PLL phase noise is lower than ?80 dBc/Hz at 10 kHz offset and the chirp linearity is better than 0.01%. The complete FMCW synthesizer is implemented and verified as a stand-alone chip in a commercially available SiGe HBT 130 nm BiCMOS technology. The total chip area is \(2.04\,\text {mm}^2\), and the total power consumption is 280 mW.  相似文献   

9.
A 300-MHz 16-b full-programmable parallel-pipelined video signal processor ULSI has been developed. With multifunctional arithmetic units to achieve parallel vector processing, and with a phase-locked-loop (PLL) type clock generator to help attain the 300-MHz internal operating speed, this ULSI is able to attain, with only one chip, 30-frame-per-second full-CIF video data coding based on CCITT H.261. Two different types of pass-transistor BinMOS circuits have been developed to help achieve an access time of 3 ns for a 146-kb SRAM and for data buses. Fabricated with a 0.5-μm BiCMOS and triple-layer metallization process technology, the video signal processor ULSI contains 1.27-million transistors in a 16.5×17.0-mm2 die area  相似文献   

10.
The phase-locked loop (PLL) is implemented by 2-μm bipolar-CMOS (BiCMOS) technology. The power dissipation of the PLL and the voltage-controlled oscillator (VCO) are 100 mW at 64 MHz and 25 mW for 1-128 MHz clock frequencies, respectively. The linearity of the VCO is ±0.5% and the temperature stability is ±50 p.p.m./°C. The center frequency of the VCO is accurately set by using one fixed external resistor. The VCO has an advantage of noise insensitivity. To achieve these features, the VCO design uses an emitter-coupled multivibrator with a built-in timing capacitor and a controlled oscillation loop gain. The PLL can be applied not only to timing recovery for data transmission, but also to frequency synthesis and self-clocking for data recording  相似文献   

11.
A clock recovery scheme for direct-detection optical on-off keying (OOK) communication systems with nonreturn-to-zero pulse shaping is proposed and investigated. In the suggested model, the optical field is detected with the aid of an avalanche photodiode (APD) photodetector, which is followed by a clock regeneration subsystem. The proposed clock recovery subsystem consists of a delay-and-multiply nonlinearity followed by a conventional phase-locked loop (PLL), tuned to the slot frequency of the desired optical OOK signal. Performance of the proposed system is obtained in terms of the signal-to-noise ratio (SNRL) of the linearized PLL device (or, equivalently, the inverse of phase, or timing, error variance) when background noise and receiver thermal noise are present. Numerical results are presented in order to explain the influence of noise processes on the performance of the proposed clock recovery subsystem. The performance of this system is also compared to that of an early-late gate and square-law symbol synchronizers  相似文献   

12.
A 10-Gb/s 16:1 multiplexer, 10-GHz clock generator phase-locked loop (PLL), and 6 × 16 b input data buffer are integrated in a 0.25-μm SiGe BiCMOS technology. The chip multiplexes 16 parallel input data streams each at 622 Mb/s into a 9.953-Gb/s serial output stream. The device also produces a 9.953-GHz output clock from a 622- or 155-MHz reference frequency. The on-board 10-GHz voltage-controlled oscillator (VCO) has a 10% tuning range allowing the chip to accommodate both the SONET/SDH data rate of 9.953 Gb/s and a forward error correction coding rate of 10.664 Gb/s. The 6 × 16 b input data buffer accommodates ±2.4 ns of parallel input data phase drift at 622 Mb/s. A delay-locked loop (DLL) in the input data buffer allows the support of multiple input clocking modes. Using a clock generator PLL bandwidth of 6 MHz, the 9.953-GHz output clock exhibits a generated jitter of less than 0.05 UIP-P over a 50-kHz to 80-MHz bandwidth and jitter peaking of less than 0.05 dB  相似文献   

13.
A read-channel chip set for rewritable 3.5 in 230 Mbytes magneto-optical disk drives (MOD) is presented. The front-end chip includes an automatic gain control (AGC) circuit, a programmable six-pole two-zero equiripple filter/equalizer, a DC restore circuit, and pulse detectors. The back-end contains a frequency synthesizer phase-locked loop (PLL) and a data separator PLL with 3:1 operating range to support a constant density recording with 8-24 Mb/s data rate (or code rate of 16 to 48 Mb/s) in (2, 7) run-length limited (RLL) encoding format. The architecture of the chip provides high degree of programmability through a serial microprocessor interface, fast switching (<1 μs) between sector mark and data detector modes, and four levels of power management in a 1.5 μm 4 GHz BiCMOS process. With a nominal power supply of 5 V, the chip set dissipates 600 mW during normal operation and 1 mW during sleep mode  相似文献   

14.
An all-digital phase-locked loop (PLL) circuit in which resolution in the phase detector and digitally controlled oscillator (DCO) exactly matches the gate-delay time is presented. The pulse delay circuit is connected in a ring shape with 32 inverters (2/sup 5/ inverters). With the inverter gate-delay time as the time base, the pulse phase difference is detected simultaneously with the generation of the output clock. In this system, the phase detector and oscillator share a single ring-delay-line (RDL). This means the resolution is the same at all times, making a high-speed response possible. In a prototype integrated circuit (IC) using 0.65-/spl mu/m CMOS, the generation of a frequency multiplication clock was achieved with four reference clocks, and that of a phase-locked clock with seven reference clocks, for a high-speed response. The cell size was 1.08 /spl times/ 1.08 mm/sup 2/, and the output clock frequency had a wide range of 50 kHz/spl sim/60 MHz. The multiplication range of the clock frequency was also a very wide 4/spl sim/1022, and a high level of precision was achieved with a clock jitter standard deviation of 234 ps. This digital PLL can withstand a broad range of operating environments, from -30/spl deg/C/spl sim/140/spl deg/C, and is suitable for making a programmable clock generator on a chip.  相似文献   

15.
A fully integrated, phase-locked loop (PLL) clock generator/phase aligner for the POWER3 microprocessor has been designed using a 2.5-V, 0.40-μm digital CMOS6S process. The PLL design supports multiple integer and noninteger frequency multiplication factors for both the processor clock and an L2 cache clock. The fully differential delay-interpolating voltage-controlled oscillator (VCO) is tunable over a frequency range determined by programmable frequency limit settings, enhancing yield and application flexibility. PLL lock range for the maximum VCO frequency range settings is 340-612 MHz. The charge-pump current is programmable for additional control of the PLL loop dynamics. A differential on-chip loop filter with common-mode correction improves noise rejection. Cycle-cycle jitter measurements with the microprocessor actively executing instructions were 10.0 ps rms, 80 ps peak to peak (P-P) measured from the clock tree. Cycle-cycle jitter measured for the processor in a reset state with the clock tree active was 8.4 ps rms, 62 ps P-P. PLL area is 1040×640 μm2. Power dissipation is <100 mW  相似文献   

16.
A 250-MHz, 16-b, fixed-point, super-high-speed video signal processor (S-VSP) ULSI has been developed for constructing a video teleconferencing system. Two major technologies have been developed. One is a high-speed large-capacity on-chip memory architecture that achieves both 250-MHz internal signal processing and 13.5-MHz input and output buffering. The other is a circuit technology that achieves 250-MHz operations with a convolver/multiplier, an arithmetic logic unit (ALU), an accumulator, and various kinds of static RAMs (SRAMs). A phase-locked loop (PLL) is also integrated to generate a 250-MHz internal clock. The S-VSP ULSI, which was fabricated with 0.8-μm BiCMOS and triple-level-metallization technology, has a 15.5-mm×13.0-mm area and contains about 1.13 million transistors. It consumes 7 W at 250-MHz internal clock frequency with a single 5-V power supply  相似文献   

17.
Circuit emulation service (CES) allows time‐division multiplexing (TDM) services (T1/E1 and T3/E3 circuits) to be transparently extended across a packet network. With circuit emulation over IP, for instance, TDM data received from an external device at the edge of an IP network is converted to IP packets, sent through the IP network, passed out of the IP network to its destination, and reassembled into TDM bit stream. Clock synchronization is very important for CES. This paper presents a clock synchronization scheme based on a double exponential filtering technique and a linear process model. The linear process model is used to describe the behaviour of clock synchronization errors between a transmitter and a receiver. In the clock synchronization scheme, the transmitter periodically sends explicit time indications or timestamps to a receiver to enable the receiver to synchronize its local clock to the transmitter's clock. A phase‐locked loop (PLL) at the receiver processes the transmitted timestamps to generate timing signal for the receiver. The PLL has a simple implementation and provides both fast responsiveness (i.e. fast acquisition of transmitter frequency at a receiver) and significant jitter reduction in the locked state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes the design of a bipolar junction transistor phase-locked loop (PLL) for ΣΔ fractional-N frequency-synthesis applications. Implemented in a 0.8-μm BiCMOS technology, the PLL can operate up to 1.8 GHz while consuming 225 mW of power from a single -2-V supply. The entire LC-tuned negative-resistance variable-frequency oscillator is integrated on the same chip. A differential low-voltage current-mode logic circuit configuration is used in most of the PLL's functional blocks to minimize phase jitter and achieve low-voltage operation. The multimodulus frequency divider is designed to support multibit digital modulation. The new phase and frequency detector and loop filter contain only npn transistors and resistors and thus achieve excellent resolution in phase comparison. When phase locked to a 53.4-MHz reference clock, the measured phase noise of the 16-GHz output is -91 dBc/Hz at 10-kHz offset. The frequency switching time from 1.677 to 1.797 GHz is 150 μs. Die size is 4300×4000 μm2, including the passive loop filter  相似文献   

19.
A 3.3 V Phase-Locked-Loop (PLL) clock synthesizer implemented in 0.5 μm CMOS technology is described. The PLL supports internal to external clock frequency ratios of 1, 1.5, 2, 3, and 4 as well as numerous static power down modes for PowerPC microprocessors. The CPU clock lock range spans from 6 to 175 MHz. Lock times below 15 μs, PLL power dissipation below 10 mW as well as phase error and jitter below ±100 ps have been measured. The total area of the PLL is 0.52 mm 2  相似文献   

20.
给出了一种用于第三代移动通信系统(3G)CDMA2000基站的时钟同步方案。由一个双星接收卡接收GPS/GLONASS标准秒信号作为整个时钟同步系统的参考,分两级锁相环实现:第一级锁相环采用软件锁相,输出10MHz信号作为第二级锁相环的参考源,第二级锁相环为2个模拟锁相环,分别输出16fc和48fc(fc=1.2288MHz)。2S信号由16fc分频得到。这种设计保证了输出时钟的长期稳定性和短期稳定性,满足协议所规定的同步精度。详细介绍了数字鉴相器、2S产生电路、相差检测及控制电路的电路设计和有关仿真结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号