首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Optical Fiber Technology》2014,20(3):245-249
In the paper spectroscopic properties of two fluorosilicate and fluorophosphate glass systems co-doped with Nd3+/Yb3+ ions are investigated. As a result of optical excitation at the wavelength of 808 nm strong and wide emission in the 1 μm region corresponding to the superposition of optical transitions 4F3/2  4I11/2 (Nd3+) and 2F5/2  2F7/2 (Yb3+) can be observed. The optimization of Nd3+  Yb3+ energy transfer in both glasses allows to manufacture multicore optical fibers with narrowing and red-shifting of amplified spontaneous emission (ASE) at 1.1 μm.  相似文献   

2.
《Optical Fiber Technology》2013,19(5):507-513
To improve the 1.53 μm band emission of Er3+, the trivalent Yb3+ ions were introduced into the Er3+ single-doped tellurite glass with composition of TeO2–ZnO–La2O3, a potential gain medium for Er3+-doped fiber amplifier (EDFA). The improved effects were investigated from the measured 1.53 μm band and visible band spontaneous emission spectra together with the calculated 1.53 μm band stimulated emission (signal gain) spectra under the excitation of 975 nm laser diode (LD). It was found that Yb3+/Er3+ co-doping scheme can remarkably improve the visible band up-conversion and the 1.53 μm band fluorescence emission intensity, and meanwhile improves the 1.53 μm band signal gain to some extent, which were attributed to the result of the effective energy transfer of Yb3+:2F5/2 + Er3+:4I15/2  Yb3+:2F7/2 + Er3+:4I11/2. The quantitative study of energy transfer mechanism was performed and microscopic energy transfer parameters between the doped rare-earth ions were determined. In addition, the spectroscopic properties of Er3+ were also investigated from the measured absorption spectrum according to the Judd–Ofelt theory, and the structure behavior and thermal stability of the prepared tellurite glass were analyzed based on the X-ray diffraction (XRD) and differential scanning calorimeter (DSC) measurements, respectively.  相似文献   

3.
A single-phased white emitting phosphor LaBSiO5:Dy3+ was successfully synthesized via a solid state reaction. The X-ray diffraction results confirmed that the doped Dy3+ ions did not change the lattice structure. Several strong excitation peaks of LaBSiO5:Dy3+ were found around 300–450 nm. Under excitation of 350 nm, the LaBSiO5:Dy3+ exhibited white emission by combining the two emission peaks at 478 and 574 nm corresponding to the typical 4F9/26H15/2 and 4F9/26H13/2 transitions. The optimal substitution proportions of Dy3+ for La3+ was determined to be 1 mol% and the critical distance of Dy3+ was 25.9628 Å. Moreover, the CIE chromaticity coordinates of LaBSiO5:Dy3+ phosphor was (0.3116, 0.3474) which is close to the ideal white light coordinates (0.333, 0.333), indicating that the phosphor has a potential application as a single component ultraviolet-convertible white light emitting phosphor.  相似文献   

4.
We report on the effect of different ethanol/water solvent ratios on the morphology of SnO2 nanocrystals prepared by the conventional hydrothermal method and their electrochemical properties. The nanocrystals were structurally and morphologically characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), surface area measurements, and transmission electron microscopy. The XRD patterns indicate that the sphere-like SnO2 microcrystals have a rutile-type tetragonal structure and FESEM images show that the microspheres have a diameter of 2–5 μm. We found that the ethanol/water volume ratio plays an important role in formation of the final product. Electrochemical tests revealed that the SnO2 microspheres had a high initial capacity of 1546 mAh g?1 at a current density of 100 mA g?1 and retained a reversible capacity of 439 mAh g?1 after 30 discharge cycles.  相似文献   

5.
Structural and electrical properties of ALD-grown 5 and 7 nm-thick Al2O3 layers before and after implantation of Ge ions (1 keV, 0.5–1 × 1016 cm?2) and thermal annealing at temperatures in the 700–1050 °C range are reported. Transmission Electron Microscopy reveals the development of a 1 nm-thick SiO2-rich layer at the Al2O3/Si substrate interface as well as the formation of Ge nanocrystals with a mean diameter of ~5 nm inside the implanted Al2O3 layers after annealing at 800 °C for 20 min. Electrical measurements performed on metal–insulator–semiconductor capacitors using Ge-implanted and annealed Al2O3 layers reveal charge storage at low-electric fields mainly due to location of the Ge nanocrystals at a tunnelling distance from the substrate and their spatial dispersion inside the Al2O3 layers.  相似文献   

6.
In this paper, Sr2MgSi2O7:Eu2+,Dy3+ (SMS) particles were first synthesized by sol–gel method and then modified with 3-aminopropyltriethoxysilane (APS) to improve their dispersibility and compatibility in the polylactic acid (PLA) matrix. The structure of pure SMS particles was analyzed by XRD and XPS. The properties of SMS particles before and after modification were characterized by FT-IR and SEM. PLA/SMS composite films containing 15 wt% of SMS particles were prepared by spin coating on silicon wafer. Their morphology and luminescence properties were examined. It was found that the composite films can be excited by a broad band from 330 nm to 425 nm with the highest excitation intensity at 360 nm. The fluorescent and phosphorescent emission bands of the composite films and SMS particles all have a major emission peak at 468 nm. Decay curves of the composite films have a similar tendency with that of the pure SMS particles, except for the lower intensity.  相似文献   

7.
Europium-doped lanthanum fluoride (LaF3:Eu3+) nanoparticles were synthesized using a solvothermal method, and they were then capped with benzoic acid (BA) ligands to form LaF3:Eu3+–BA hybrid nanostructures. The LaF3:Eu3+–BA hybrid nanostructures showed strong luminescence as a result of energy transfer from BA to the Eu3+ ions of the LaF3:Eu3+ nanoparticles. The dominant excitation band for the LaF3:Eu3+–BA hybrid nanostructures ranged from 200 nm to 300 nm. It has been shown that the luminescence of LaF3:Eu3+–BA hybrid nanostructures strongly depends on the pH value and content of benzoic acid used in the preparation of the hybrid nanostructures. An X-ray diffraction technique, transmission electron microscopy, luminescence spectroscopy, Fourier transform infrared spectroscopy and a UV–vis spectrophotometer were used to characterize the products.  相似文献   

8.
A series of Eu3+–Gd3+ co-doped solid solution of Ca0.54Sr0.46–1.5x–1.5zEuzGdx (MoO4)y (WO4)1−y (x=0.01–0.20, y=0–1.0, z=0.01–0.30) have been prepared by solid-state reactions. It is found that appropriate amount of Mo6+ or W6+, Eu3+ and Gd3+concentrations can enhance the luminescent intensity and improve crystal structure. These phosphors can be effectively excited by ultraviolet light at 394 nm and blue light at 465 nm (f–f transition) and emits red light (616 nm) with line spectrum. The wavelengths at 394 and 465 nm are nicely fitted in with the widely applied output wavelengths of ultraviolet or blue LED chips.  相似文献   

9.
Antimony sulfide films have been deposited by pulse electrodeposition on Fluorine doped SnO2 coated glass substrates from aqueous solutions containing SbCl3 and Na2S2O3. The crystalline structure of the films was characterized by X-ray diffraction, Raman spectroscopy and TEM analysis. The deposited films were amorphous and upon annealing in nitrogen/sulfur atmosphere at 250 °C for 30 min, the films started to become crystalline with X-ray diffraction pattern matching that of stibnite, Sb2S3, (JCPDS 6-0474). AFM images revealed that Sb2S3 films have uniformly distributed grains on the surface and the grain agglomeration occurs with annealing. The optical band gap calculated from the transmittance and the reflectance studies were 2.2 and 1.65 eV for as deposited and 300 °C annealed films, respectively. The annealed films were photosensitive and exhibited photo-to-dark current ratio of two orders of magnitude at 1 kW/m2 tungsten halogen radiation.  相似文献   

10.
This paper reported an enhanced photoluminescence of CaSb2O6:Bi3+ by efficient charge compensation. Charge compensated CaSb2O6:Bi3+,M+ (M=Li, Na and K) phosphors were prepared using a co-precipitation technique followed by heat-treatment. The structure and morphology of the as-prepared CaSb2O6:Bi3+,M+ samples were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results revealed that the obtained CaSb2O6:Bi3+,M+ samples are hexagonal crystal structure and this structure was retained regardless of co-doping by Li+, Na+ or K+. All samples showed sphere-like shape with particle size of 40–80 nm. The optical properties of products were studied by UV–vis diffuse reflectivity, photoluminescence spectra and luminescence decay measurements. Under the excitation of 336 nm light, all of the samples exhibited a strong blue emission peaking around 437 nm, which is attributed to the 3P11S0 transition of the Bi3+ ion. It was found that the charge compensation has significant effect on the photoluminescence properties of CaSb2O6:Bi3+ and the best luminescence properties have been achieved for CaSb2O6:0.75Bi3+,0.75 Na+. The mechanism for the enhancement of the blue emission has also been studied in detail. Our results suggested that the optical properties of oxide nanostructures can be tailored through co-doping with aliovalent ions and the favorable luminescence properties of CaSb2O6:Bi3+,Na+ make it potential for lighting and display applications.  相似文献   

11.
We report the effect of yellow Sr2SiO4:Eu2+ and green SrGa2S4:Eu2+ phosphors on the efficiency of organic photovoltaic (OPV) cells. Each phosphor was coated on the back side of indium tin oxide (ITO)/glass substrates by spin coating with poly(methyl methacrylate) (PMMA). The maximum absorption wavelength of the active layer in the OPV cells was ~512 nm. The emission peaks of Sr2SiO4:Eu2+ and SrGa2S4:Eu2+ were maximized at 552 nm and 534 nm, respectively. The short circuit current density (Jsc) and power conversion efficiency (PCE) of the OPV cells with Sr2SiO4:Eu2+ (8.55 mA/cm2 and 3.25%) and with SrGa2S4:Eu2+ (9.29 mA/cm2 and 3.3%) were higher than those of the control device without phosphor (7.605 mA/cm2 and 3.04%). We concluded that phosphor tuned the wavelength of the incident light to the absorption wavelength of the active layer, thus increasing the Jsc and PCE of the OPV cells.  相似文献   

12.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

13.
Synthesis and Electrochemical properties of zinc antimonate nanoparticles have been explored and the strategy was to engage zinc antimonate towards supercapacitors. Cyclic voltammetry measurements were done at different sweep rates and the inclusion of two heterovalent metal cations such as Zn2+ and Sb5+ in the nanostructure participates in the electrochemical phenomena thereby exhibiting pseudocapacitance behavior with a significant specific capacitance of 140.8 F/g at the sweep rate of 10 mV/s was achieved. Further, from galvanostatic charge-discharge measurements, it is apparent that the capacitor characteristics were found to be phenomenal in 1 M H2SO4 electrolyte with good electrochemical constancy over 500 cycles with an incredible capacity retention of 100% at a current density of 1 A/g respectively. The results suggest that the obtained zinc antimonate could be a promising, inexpensive and electrochemically active candidate in supercapacitor application.  相似文献   

14.
We have demonstrated the electroluminescent (EL) properties of 2-mercaptobenzothiazolate complexes of rare earth metals [Ln(mbt)3, Ln = Y, Sm, Eu, Gd, Tb, Dy, Tm] using simple non-doped two-layer organic light emitting diode with the configuration of indium tin oxide/N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine/Ln(mbt)3/Yb. It was found that 2-mercaptobenzothiazolate complexes have highly efficient intra-energy transfer from the singlet to the triplet state of the ligand, and then to the excited state of the central lanthanide ions. Thus Y(mbt)3 and Gd(mbt)3 exhibit the broad ligand-centered emission with maximum near 600 nm and Dy(mbt)3, Tb(mbt)3 and Tm(mbt)3 complexes exhibit pure sharp emission bands from the intra f–f transitions of lanthanide ions Tb3+: 5D4  7F6 (492 nm), 5D4  7F5 (547 nm), 5D4  7F4 (589 nm), 5D4  7F3 (624 nm); Dy3+: 4F9/2  6H13/2 (575 nm) and Tm3+: 3H43H6 (795 нм).  相似文献   

15.
《Organic Electronics》2007,8(6):718-726
High-performance pentacene field-effect transistors have been fabricated using Al2O3 as a gate dielectric material grown by atomic layer deposition (ALD). Hole mobility values of 1.5 ± 0.2 cm2/V s and 0.9 ± 0.1 cm2/V s were obtained when using heavily n-doped silicon (n+-Si) and ITO-coated glass as gate electrodes, respectively. These transistors were operated in enhancement mode with a zero turn-on voltage and exhibited a low threshold voltage (< −10 V) as well as a low sub-threshold slope (<1 V/decade) and an on/off current ratio larger than 106. Atomic force microscopy (AFM) images of pentacene films on Al2O3 treated with octadecyltrichlorosilane (OTS) revealed well-ordered island formation, and X-ray diffraction patterns showed characteristics of a “thin film” phase. Low surface trap density and high capacitance density of Al2O3 gate insulators also contributed to the high performance of pentacene field-effect transistors.  相似文献   

16.
The present paper deals with the effect of europium (Eu3+) doping concentration (0.1–2.5 mol%) on photoluminescence (PL) and thermoluminescence (TL) of strontium yttrium oxide (SrY2O4) phosphor. The sample was prepared by the modified solid state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized by using X-ray Diffraction (XRD), field emission gun scanning electron microscopy, fourier transform infrared spectroscopy, high resolution transmission electron microscopy, photoluminescence, thermoluminescence and commission internationale de I׳Eclairage techniques. The PL emission was observed in the range of 410–630 nm for the SrY2O4 phosphor doped with Eu3+. Excitation spectrum was found at 254 and 325 nm, sharp peaks were found around 593, 615 and 625 nm with high intensity. From the XRD data, using Scherrer׳s formula, calculated average crystallite size of Eu3+ doped SrY2O4 phosphor is around 32 nm. Thermoluminescence study was carried out for the phosphor with UV and gamma irradiation. The TL response of SrY2O4:Eu3+ phosphor for two different radiations was compared and studied in detail. The present phosphor can act as a single host for white light emission in display devices. The detailed process and possible mechanisms for PL and TL are studied and discussed. For the variable concentration of Eu3+ on PL studies the PL intensity increases with increasing the concentration of dopant and the concentration quenching found after 2 mol% of Eu3+ the optimized concentration was 2 mol%, which is suitable for the display device application. In TL glow curve the optimized concentration was 1 mol% for the UV irradiated sample and 0.2 mol% of Eu3+ for the gamma irradiated sample and beta irradiated sample for 10 Gy dose. The kinetic parameters were calculated by the computerized glow curve deconvolution (CGCD) technique.  相似文献   

17.
Photoluminescence (PL) spectra of Tl4GaIn3Se2S6 layered crystals grown by the Bridgman method have been studied in the energy region of 2.02–2.35 eV and in the temperature range of 16–45 K. A broad PL band centered at 2.20 eV was observed at T=16 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.1 to 149.9 mW cm−2 range. Radiative transitions from shallow donor level located at 10 meV below the bottom of conduction band to moderately deep acceptor level located at 180 meV above the top of the valence band were suggested to be responsible for the observed PL band. An energy level diagram showing transitions in the band gap of the crystal was plotted taking into account the results of present work and previously reported paper on thermally stimulated current measurements carried out below room temperature. Analysis of the transmission and reflection measurements performed in the wavelength range of 400–1030 nm at room temperature revealed the presence of indirect transitions with 2.22 eV band gap energy.  相似文献   

18.
Rare-earth ternary complexes EuXLa1?X(TTA)3Dipy (X = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0) were synthesized. Characterization with DTA-TG, IR, elemental analysis and fluorescent spectra had also been carried out. It is found that the enhanced luminescence of Eu3+ ions by La3+ ions occurs in ternary complexes, and when X = 0.25, Eu0.25La0.75(TTA)3Dipy has the highest luminescence efficiency and lifetime. It is proved by TG curve that the complexes are stable, and we monitored the spectra of EuXLa1?X(TTA)3Dipy[PVK:EuXLa1?X(TTA)3Dipy/BCP/AlQ/Al] at the different rate r min?1. The results showed that the La3+ ion acts as an energy transfer bridge that helps energy transfer from PVK to Eu3+.  相似文献   

19.
In this study, a novel metal–semiconductor gate enhancement-mode (E-mode) and a metal–insulator-metal–semiconductor (MIMS) gate depletion-mode (D-mode) AlGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) on a single GaAs substrate have been developed by using high dielectric constant praseodymium insulator layer. The epitaxial layers were design for an enhancement-mode pHEMT after gate recess process. To achieve E/D-mode pHEMTs on single GaAs wafer, traditional Pt/Ti/Au metals were deposited as Schottky contact for E-mode pHEMTs and Pr/Pr2O3/Ti/Au were deposited as MIMS-gate for D-mode pHEMTs. This AlGaAs/InGaAs E-mode pHEMTs exhibit a gate turn-on voltage (VON) of +1 V and a gate-to-drain breakdown voltage of ?5.6 V, and these values were +7 V and ?34 V for MIMS-gate D-mode pHEMTs, respectively. Therefore, this high-k insulator in D-mode pHEMT is beneficial for suppressing the gate leakage current. Comparing to previous E/D-mode pHEMT technology, this E-mode pHEMTs and MIMS-gate D-mode pHEMTs exhibit a highly potential for high uniformity GaAs logic circuit applications due to its single recess process.  相似文献   

20.
The present study explains the preparation of PbSnS3 nanocrystals using mechanical alloying as the processing technique and elemental powders as the starting material. The elemental powders of Pb, Sn and sublimed sulphur (S) were mechanically alloyed for 40 h. Phases evolved during mechanical alloying are explored by X-ray diffraction (XRD). The morphology and microstructural features have been investigated using High-resolution Transmission Electron Microscopy (HRTEM). UV–Vis–NIR spectroscopy has been used to measure the optical absorption characteristics. The mechanically alloyed powders show particle sizes in the range of 3–12 nm. The absorption edge extends from 503 nm to the visible region to 1360 nm near infrared region with a sudden change in slope at 860 nm, indicating the feature of indirect band gap semiconductors. The intersection point with the x-axis of extrapolating (αE)2 line as a function of E gives a direct band gap of 1.33 eV and an indirect gap of 0.59 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号