首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper presents an adaptive decision feedback equalizer (DFE) based multiuser receiver for code division multiple access (CDMA) systems over smoothly time-varying multipath fading channels using the two-step LMS-type algorithm. The frequency-selective fading channel is modeled as a tapped-delay-line filter with smoothly time-varying Rayleigh-distributed tap coefficients. The receiver uses an adaptive minimum mean square error (MMSE) multiuser channel estimator based on the reduced Kalman least mean square (RK-LMS) algorithm to predict these tap coefficients (Kohli and Mehra, Wireless Personal Communication 46:507–521, 2008). We propose the design of adaptive MMSE feedforward and feedback filters by using the estimated channel response. Unlike the previously available Kalman filtering algorithm based approach (Chen and Chen, IEEE Transactions on Signal Processing 49:1523–1532, 2001), the incorporation of RK-LMS algorithm reduces the computational complexity of multiuser receiver. The computer simulation results are presented to show the substantial improvement in its bit error rate performance over the conventional LMS algorithm based receiver. It can be inferred that the proposed multiuser receiver proves to be robust against the nonstationarity introduced due to channel variations, and it is also beneficial for the multiuser interference cancellation and data detection in CDMA systems.  相似文献   

2.
A novel robust noncoherent receiver for minimum mean-squared error (MMSE) interference suppression for direct-sequence code-division multiple access (DS-CDMA) is proposed. The receiver consists of a linear MMSE filter and a decision-feedback differential detector (DF-DD). The performance of the proposed scheme is investigated analytically and by computer simulations. It is shown that the loss compared to coherent MMSE interference suppression is limited and can be made arbitrarily small by increasing the observation window used for calculation of the reference symbol of the DF-DD. Hence, the regarded noncoherent receiver is near-far resistant. For adjustment of the MMSE filter coefficients three noncoherent adaptive algorithms are proposed. In contrast to coherent adaptive algorithms, these noncoherent algorithms have the important advantage that they also converge if the channel phase is time-variant  相似文献   

3.
A novel multiuser code division multiple access (CDMA) receiver based on genetic algorithms is considered, which jointly estimates the transmitted symbols and fading channel coefficients of all the users. Using exhaustive search, the maximum likelihood (ML) receiver in synchronous CDMA systems has a computational complexity that is exponentially increasing with the number of users and, hence, is not a viable detection solution. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Based on the ML rule, GAs are developed in order to jointly estimate the users' channel impulse response coefficients as well as the differentially encoded transmitted bit sequences on the basis of the statistics provided by a bank of matched filters at the receiver. Using computer simulations, we showed that the proposed receiver can achieve a near-optimum bit-error-rate (BER) performance upon assuming perfect channel estimation at a significantly lower computational complexity than that required by the ML optimum multiuser detector. Furthermore, channel estimation can be performed jointly with symbol detection without incurring any additional computational complexity and without requiring training symbols. Hence, our proposed joint channel estimator and symbol detector is capable of offering a higher throughput and a shorter detection delay than that of explicitly trained CDMA multiuser detectors  相似文献   

4.
Joint data and channel estimation for mobile communication receivers can be realized by employing a Viterbi detector along with channel estimators which estimate the channel impulse response. The behavior of the channel estimator has a strong impact on the overall error rate performance of the receiver. Kalman filtering is an optimum channel estimation technique which can lead to significant improvement in the receiver bit error rate (BER) performance. However, a Kalman filter is a complex algorithm and is sensitive to roundoff errors. Square-root implementation methods are required for robustness against numerical errors. Real-time computation of the Kalman estimator in a mobile communication receiver calls for parallel and pipelined structures to take advantage of the inherent parallelism in the algorithm. In this paper different implementation methods are considered for measurement update and time update equations of the Kalman filter. The unit-lower-triangular-diagonal (LD) correction algorithm is used for the time update equations, and systolic array structures are proposed for its implementation. For the overall implementation of joint data and channel estimation, parallel structures are proposed to perform both the Viterbi algorithm and channel estimation. Simulation results show the numerical stability of different implementation techniques and the number of bits required in the digital computations with different estimators  相似文献   

5.
Optimal receiver diversity combining employing linear channel estimation is examined. Based on the statistical properties of least-squares (LS) and minimum mean square error (MMSE) channel estimation, an optimal diversity receiver for wireless systems employing practical linear channel estimation on Rician fading channels is proposed. The new receiver structure includes the conventional maximal ratio combining receiver as a special case. Exact analytical expressions for the symbol error rates (SERs) of LS and MMSE channel estimation aided optimal diversity combining are derived. It is shown that, if an optimal detector is used, an MPSK wireless system with MMSE channel estimation has the same SER when the MMSE channel estimation is replaced by LS estimation. This is an interesting counterexample to the common perception that channel estimation with smaller mean square error leads to smaller SER. Extensive simulation results validate the theoretical results.  相似文献   

6.
A novel Gaussian approximation based mixture reduction algorithm is proposed for semi-blind joint channel tracking and symbol detection for spatial multiplexing multiple-input multiple-output (MIMO) systems with frequency-flat time-selective channels. The proposed algorithm is based on a modified sequential Gaussian approximation detector (SGA) which takes into account channel uncertainty, and the first order generalized pseudo-Bayesian (GPB1) channel estimator. Simulation results show that the proposed algorithm performs better than the conventional and computationally expensive decision-directed method with Kalman filter based channel estimation and a posteriori probability (APP) symbol detection.  相似文献   

7.
Multiuser detection (MUD) and channel estimation techniques in space-division multiple-access aided orthogonal frequency-division multiplexing systems recently has received intensive interest in receiver design technologies. The maximum likelihood (ML) MUD that provides optimal performance has the cost of a dramatically increased computational complexity. The minimum mean-squared error (MMSE) MUD exhibits poor performance, although it achieves lower computational complexity. With almost the same complexity, an MMSE with successive interference cancellation (SIC) scheme achieves a better bit error rate performance than a linear MMSE multiuser detector. In this paper, hybrid ML-MMSE with SIC adaptive multiuser detection based on the joint channel estimation method is suggested for signal detection. The simulation results show that the proposed method achieves good performance close to the optimal ML performance at low SNR values and a low computational complexity at high SNR values.  相似文献   

8.
The problems of channel estimation and multiuser detection for direct sequence code division multiple access (DS/CDMA) systems employing long spreading codes are considered. With regard to channel estimation, several procedures are proposed based on the least-squares approach, relying on the transmission of known training symbols but not requiring any timing synchronization. In particular, algorithms suited for the forward and reverse links of a single-rate DS/CDMA cellular system are developed, and the case of a multirate/multicode system, wherein high-rate users are split into multiple virtual low-rate users, is also considered. All of the proposed procedures are recursively implementable with a computational complexity that is quadratic in the processing gain, with regard to the issue of multiuser detection, an adaptive serial interference cancellation (SIC) receiver is considered, where the adaptivity stems from the fact that it is built upon the channel estimates provided by the estimation algorithm. Simulation results show that coupling the proposed estimation algorithms with a SIC receiver may yield, with a much lower computational complexity, performance levels close to those of the ideal linear minimum mean square error (MMSE) receiver, which assumes perfect knowledge of the channels for all of the users and which (in a long-code scenario) has a computational complexity per symbol interval proportional to the third power of the processing gain  相似文献   

9.
针对混沌直接序列扩频(Chaotic Direct Sequence Spread Spectrum,CD3S)通信技术的实现问题,提出了一种CD3S通信的软件无线电实现方案,阐述了CD3S通信系统发收机的设计方法。发射机由软件实现信息码的混沌扩频,并通过硬件平台完成发射。接收机由硬件平台完成下变频与采样,然后通过软件实现定时同步、载波同步与信息解调。信息解调由多滤波器解调算法实现。在多滤波器解调算法中,由无损卡尔曼滤波(Unscented Kalman Filter,UKF)估计混沌码、卡尔曼滤波(Kalman Filter,KF)估计信道参数和最小均方误差(Minimum Mean Square Error,MMSE)滤波估计信息码这3个滤波器交替工作,通过联合估计实现信息码的解调。实验结果表明,该方案可以实现CD3S通信。  相似文献   

10.
Based on the minimum mean squared error (MMSE) between the data stream and the linear combiner output, a new multiuser detection (MUD) algorithm that combines space–time (ST) processing and antenna array on direct-sequence CDMA signals is proposed. The proposed ST-MUD algorithm is proved to be equivalent to two existing MMSE-based ST-MUD algorithms, and the theoretical BER performances for all the three algorithms are the same. The most attractive feature of the new ST-MUD algorithm is based on the fact that the new method does not require explicit estimation of channel and signaling information. This avoids any channel estimation error, and the method is thus more robust and more accurate than the other two ST-MUD algorithms in practical implementation. Adaptation of the proposed ST-MUD algorithm is implemented by using training sequences. Performance of this new multiuser detector is compared with that of two existing MMSE multiuser detectors and the conventional single-user space–time rake receiver through simulations. The proposed ST-MUD algorithm provides a performance better than existing algorithms and is especially suitable for practical CDMA systems.  相似文献   

11.
A new iterative receiver for joint detection and decoding of code division multiple access (CDMA) signals is presented. The new scheme is based on a combination of the minimum mean square error (MMSE) criterion and the turbo processing principle by Hagenauer (see Proc. Int. Symp. Turbo Codes and Related Topics, Brest, France, p.1-9, 1997). The complexity of the new scheme is of polynomial order in the number of users. The new scheme is applicable to two situations: (a) when the receiver is capable of decoding the signals from all users and (b) when the receiver is only capable of decoding the signals from a subset of users. In the first scenario, we establish that the proposed receiver achieves superior performance to the iterative soft interference cancellation technique under certain conditions. On the other hand, in the second scenario, we argue that the proposed receiver outperforms both the iterative soft interference canceler and the iterative maximum a posteriori (MAP) receiver because of its superior near-far resistance. For operation over fading channels, the estimation of the complex fading parameters for all users becomes an important ingredient in any multiuser detector. In our scheme, the soft information provided by the decoders is used to enhance this estimation process. Two iterative soft-input channel estimation algorithms are presented: the first is based on the MMSE criterion, and the second is a lower-complexity approximation of the first. The proposed multiuser detection algorithm(s) are suitable for both terrestrial and satellite applications of CDMA  相似文献   

12.
An optimal multiuser detector in the weighted least squares (WLS) sense is derived. This detector, which includes the maximum likelihood multiuser detector as a special case, consists of two parts: a bank of linear fractionally chip spaced minimum mean squared error (MMSE) filters, and a nonlinear WLS metric minimizer. It is shown that the symbol spaced samples at the output of the MMSE filter bank provide a set of sufficient statistics for WLS detection. The relationship between the taps of a centralized decision feedback detector and the MMSE filter bank is derived. It is proven that all the necessary parameters for implementing the WLS detector can be realized by adaptively training a centralized decision feedback detector. Therefore, the WLS detector achieves optimal joint synchronization and data detection even in the presence of colored noise, such as narrowband interference, without any a priori knowledge of the users' signatures, multipath channel taps or statistics of the colored noise. Significant features of the WLS detector are that: (1) the WLS detector is a generalization of the maximum likelihood multiuser detector that employs a bank of matched filters; (2) it is implemented adaptively; and (3) it has structural flexibility in terms of implementation complexity  相似文献   

13.
Channel estimation errors have not been taken into account by existing soft-output minimum mean square error (MMSE) vertical Bell Lab Space Time (V-BLAST) detectors. As a result, the system performance will be degraded under practical channel estimation. In this letter, we propose a novel soft-output MMSE V-BLAST detector, which takes the estimation error of maximum likelihood (ML) multiple-input multiple-output (MIMO) channel estimation and receiver spatially correlation into account in the computation of the MMSE filter and loglikelihood ratio (LLR) of each coded bit. When compared with existing MMSE V-BLAST detectors, simulation results show that the proposed novel detector can obtain sizable performance gain.  相似文献   

14.
We discuss a synchronous direct-sequence code division multiple-access (DS-CDMA) system based on block spreading in the presence of frequency-selective fading. Note that block spreading, which is also known as chip interleaving, refers to a spreading of a data block sequence, which is obtained by dividing a data symbol sequence into consecutive blocks. For such a system, we develop a simple new receiver that completely removes the multiuser interference (MUI) without using any channel information. The MUI-free operation is obtained by the use of a shift-orthogonal set of code sequences on which this receiver is based. Within the framework of the MUI-free receiver, we further present a subspace deterministic blind single-user channel estimation algorithm. As a benchmark for the MUI-free receiver and the corresponding subspace deterministic blind single-user channel estimation algorithm, we consider the linear multiuser equalizer and the corresponding subspace deterministic blind multiuser channel estimation algorithm developed by Liu and Xu (1996) for a standard synchronous DS-CDMA system in the presence of frequency-selective fading. We show that the complexity of the MUI-free receiver using the corresponding subspace deterministic blind single-user channel estimation algorithm is much smaller than the complexity of the linear multiuser equalizer using the corresponding subspace deterministic blind multiuser channel estimation algorithm. We further show that the performance of the MUI-free receiver is comparable with the performance of the linear multiuser equalizer. This is for the case in which the channels are known as well as for the case in which the channels are estimated with the corresponding subspace deterministic blind channel estimation algorithm  相似文献   

15.
We investigate linear and nonlinear space-time minimum mean-square-error (MMSE) multiuser detectors for high data rate wireless code-division multiple-access (CDMA) networks. The centralized reverse-link detectors comprise a space-time feedforward filter and a multiuser feedback filter which processes the previously detected symbols of all in-sector users. The feedforward filter processes chip-rate samples from a bank of chip-matched filters which operate on the baseband outputs from an array of antennas. We present an adaptive multiuser recursive least squares (RLS) algorithm which determines the MMSE adjusted filter coefficients with less complexity than individual adaptation for each user. We calculate the outage probabilities and isolate the effects of antenna, diversity, and interference suppression gains for linear and nonlinear filtering and for CDMA systems with varying levels of system control (e.g., timing control, code assignment, cell layout). For eight users transmitting uncoded 2-Mb/s quadrature phase-shift keying with a spreading gain of eight chips per symbol over a fading channel with a multipath delay spread of 1.25 μs, the performance of a three-antenna feedforward/feedback detector was within 1 dB (in signal-to-noise ratio per antenna) of ideal detection in the absence of interference. By training for 10% of a 5-ms frame, RLS adaptation enabled the same detector to suffer less than a 0.5-dB penalty due to the combined effects of imperfect coefficients and error propagation. The advantage of nonlinear feedforward/feedback detection over linear feedforward detection was shown to be significantly larger for a CDMA system with enhanced system control  相似文献   

16.
A new technique for joint channel estimation and symbol detection in the Rayleigh flat-fading channels with impulsive noise is developed. This technique involves an approximation to the likelihood statistics for such channels, which in turn is based on the Masreliez approximation of nonlinear filtering. It is seen that the proposed detector outperforms the detector based on the Kalman filter  相似文献   

17.
Proposes a suboptimal low-complexity multiuser receiver for synchronous CDMA frequency-selective Rayleigh fading channels. In contrast to the conventional RAKE receiver, which suffers from near-far effects due to channel fading, the proposed multiuser receiver is shown to alleviate the near-far problem while preserving multipath diversity gain. This is demonstrated by comparing the symbol error probability and asymptotic multiuser efficiency of the proposed multiuser detector and RAKE receiver  相似文献   

18.
It is shown that a first-order linear state-space model applies to the asynchronous code-division multiple-access (CDMA) channel, and thus the Kalman filter produces symbol estimates with the minimum mean-squared error (MMSE) among all linear filters, in long- or short-code systems for a given detection delay. This result may be used as a benchmark against which to compare the performance of other linear detectors in asynchronous channels. It also reveals that a time-varying recursive filter with a fixed and finite complexity implements the fixed-lag linear MMSE (LMMSE) detector, which hitherto has been assumed to require a processing window (and hence complexity) that grows with time  相似文献   

19.
一种新的盲空时多用户检测器   总被引:4,自引:1,他引:3       下载免费PDF全文
王伶  焦李成  刘芳 《电子学报》2002,30(6):835-838
多用户检测是DS-CDMA系统中的一项关键技术,而阵列天线也是一项减轻多用户干扰的方法.许多现存的多用户检测器需要知道很多系统参数,并且其自适应实现需要发送训练序列.在多径衰落信道下,这些参数是很难获得的.本文提出了一种新的基于Kalman滤波的盲空时多用户检测器(BSTKAL),这种多用户检测器不需要发送训练序列.研究结果表明,检测器具有较强的抑制多址干扰和克服"远-近"效应的能力,并且能快速收敛.  相似文献   

20.
A linear detector for a quasisynchronous code-division multiple-access (QS-CDMA) cellular system is presented, which is designed according to a minimum mean-square error (MMSE) criterion. By using a time-averaged version of the interfering signal covariance matrix, it is shown that multiuser interference can be rejected without the need to estimate signal time-of-arrival. Furthermore, unlike previous MMSE receiver designs, estimation of the received signal covariance matrix is not required. An asymptotic form of the MMSE detector, corresponding to a decorrelator implemented using a projection operator, is also obtained. Bit-error rate (BER) results are presented which demonstrate the superiority of the MMSE receiver over the conventional matched-filter detector under strong near-far conditions. An analysis of the expected acquisition time T¯ACQ is given for the decorrelator detector using a serial search scheme. The results obtained show that T¯ACQ is far less for a code acquisition method using the decorrelator as opposed to a conventional matched filter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号