首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
王莉芳 《激光杂志》2022,43(3):154-158
针对激光雷达传输频率不稳定现象,提出激光雷达通信传输频率线性代数模型优化方法,降低激光雷达通信传输频率的漂移、有效抑制通信噪声。基于激光雷达稳频装置的通信传输稳频控制原理,为优化装置中控制系统发生搅动时产生的通信传输频率漂移,将频率响应初始斜率和频率响应截线斜率作为线性输入建立线性代数方程组,并求解该方程组,获取最低频率,以此完成控制系统在搅动时的频率稳定优化。测试结果表明:该方法应用后,激光雷达在通信传输过程中产生的频率漂移降低,通信传输频率稳定,激光雷达通信传输噪声抑制性能提升,激光雷达通信信号切换稳定性较高,应用性能较好。  相似文献   

2.
为降低拉曼激光的频率噪声,提出了一种相位-频率双调制稳频技术。用光纤电光相位调制器对激光进行调制并产生大失谐边带;用射频信号对光纤相位调制器的微波驱动信号进行频率调制,通过锁相放大法将一个大失谐边带锁到铷原子的饱和吸收谱线上。利用该技术实现了拉曼种子激光的稳频和2 GHz的移频,拉曼激光的线宽大幅压窄到56 kHz,预期拉曼激光频率噪声引起的原子干涉重力仪的单次测量噪声可降低到7×10-9/s2。  相似文献   

3.
传统的1064 nm稳频激光器虽然能达到很高的频率稳定度和不确定度,但其体积比较庞大,系统设计比较复杂。而对于一些激光频率稳定度要求不高的实际应用,如高光谱分辨率气溶胶探测激光雷达,系统简单与缩小体积应该是更受关注的因素。利用碘分子吸收谱线并结合频率调制光谱技术建立了一套小型化的1064 nm稳频激光器,该系统结构紧凑。通过高稳定的波长计进行监测,测量频率稳定后的激光器在10000 s时的阿伦偏差精度小于0.1 MHz。该稳频的1064 nm激光器系统已被用作高光谱分辨率气溶胶探测激光雷达单频脉冲光源的种子激光器。  相似文献   

4.
李路  庄鹏  谢晨波  王邦新  邢昆明 《红外与激光工程》2021,50(3):20200289-1-20200289-8
多普勒测风激光雷达通过分析系统回波信号的多普勒频移反演出风速,为提高风场探测精度,从稳频技术方面展开研究。在稳频过程中,分别采取措施消除激光频率的长期漂移和短期抖动。针对激光频率的长期漂移,设计并研制了种子激光器温控箱,通过水浴的控温方式大大减小了激光频率的长期漂移,将激光频率稳定在±50 MHz以内;针对激光频率的短期抖动,采用以碘分子吸收池为核心器件的稳频系统,通过半导体控温方式对碘分子吸收池精确控温,控温精度达0.03 ℃,提高了稳频精度,将激光频率进一步稳定在±8 MHz以内,满足±10 MHz以内的设计精度要求。通过搭建多普勒测风激光雷达系统,对发射激光稳频装置进行系统验证,连续4组风场观测结果表明:系统探测高度为17 km,绝大部分方差在4 m/s以下,满足测风激光雷达测量指标的要求。  相似文献   

5.
频率稳定度是表征频率稳定程度的一个极其重要的指标参数。为了满足激光雷达系统的应用需求,本课题研制了一套基于PDH技术的激光稳频系统。直接数字频率合成器产生激光器高频相位调制信号,模拟混频器解调激光器的频率漂移信息,作为稳频控制系统的核心控制部分的高集成度数字信号处理器,负责整个系统的信号处理及比例积分微分(PID)伺服等。  相似文献   

6.
为改善旋翼飞机空地语音通信质量,针对旋翼飞机螺旋桨造成的幅度调制(Amplitude Modulation,AM)信号复杂多频干扰以及恶劣机舱背景噪声,提出了一种通信语音时频掩膜智能增强方法,从而实现对机舱噪声与复杂干扰的有效抑制。该方法首先对原始时域语音信号进行分帧与加窗,通过短时傅里叶变换获取幅度谱与相位谱;然后将原始幅度谱作为网络输入,采用深度神经网络分析其语音信号的特征,采用长短期记忆网络挖掘语音信号的时序上下文信息,实现对语音时频掩膜的准确估计,并将其用于增强原始幅度谱以得到网络输出;最后结合原始相位谱,通过逆短时傅里叶变换获得增强后的时域语音信号。仿真与实际测试表明,该方法可有效抑制旋翼飞机环境下的干扰噪声,提高通信语音信号质量。  相似文献   

7.
《无线电工程》2018,(6):502-506
在通信系统中,频率源的相位噪声和频率跳变时间对系统的指标有重要影响。为了满足通信系统性能日益提高的需要,设计了一种低相噪快速跳变频率源。分析了各种频率源信号产生方式的优缺点,使用AD公司的鉴相器和国产定制VCO,采用锁相方式产生大步进和小步进2种信号,混频得到Ku波段信号,倍频滤波得到Ka波段信号。详细分析了各项指标的设计,仿真了锁相源的相位噪声和跳频时间,讨论了影响杂散的因素及解决办法。测试结果表明,该频率源输出频率范围为30~31 GHz,跳频时间为22μs,相位噪声为-97.0 d Bc/Hz@10 k Hz,达到同类产品较高水平。  相似文献   

8.
在使用铷原子饱和吸收谱线作为激光频率参考进行稳频的激光稳频系统中,环路带宽是影响激光输出频率噪声的重要因素之一。对激光稳频系统中限制环路带宽的主要因素进行分析,使用射频调制信号直接调制商用外腔半导体激光器的高速电流调制端来对激光稳频系统的环路带宽进行拓展。根据对稳频环路的分析,合理设置反馈电路,实现激光稳频。使用低频谱分析仪对稳频后的鉴频信号进行分析,发现带宽拓展后,在傅里叶频率为5kHz处对频率噪声的抑制度达到了20dB以上。通过将该稳频激光器输出的激光与锁定在极稳恒温晶振上的飞秒光学频率梳进行拍频,测量了该稳频激光相对光梳的频率噪声,测量结果与直接分析鉴频信号的结果吻合。经过测量,通过拓展带宽抑制频率噪声,稳频激光器的短期频率稳定度得到改善。最后,测量了稳频激光相对于锁定在恒温晶振上的飞秒光学频率梳的频率稳定度,Allan方差在平均时间1s时达到4.52×10~(-12),在平均时间20s时达到1.65×10~(-12)。  相似文献   

9.
基于Rb原子频标电注入锁定的高频稳低相噪光电振荡器   总被引:3,自引:3,他引:0  
为了进一步改善光电振荡器(OEO)输出信号频 率的长期稳定度和相位噪声,提出了一种基于 Rb原子频标电注入锁定的单环OEO。将Rb原子钟产生的高频稳正弦信号注入到单环OEO,通过 注入信号与自由振荡信号的频率牵引,OEO获得单一振荡模式。实验发现,随着注入功 率的 增大,锁定带宽变大,锁定信号的相位噪声变差;随着注入功率的下降,锁定带宽变小,锁 定信号的相位噪声得 到改善,趋近于注入源信号的相位噪声。当光纤长取10km时,获得 了中心频率10GHz、边模抑制比大 于60dB、相位噪声的指标为-76dBc/Hz@100Hz和-108dBc/Hz@10kHz的输出信号,其输 出信号的长期稳定度和准确度得到改善。实验结果与理论分析一致。  相似文献   

10.
张明富  杨天新  葛春风 《红外与激光工程》2022,51(7):20210435-1-20210435-7
在远距离相干测量系统中,分布反馈式半导体激光器(DFB-LD)以其直接高速调制特性、低成本、可批量生产等优势成为精密遥测系统的核心光源,因此对DFB-LD的窄线宽和短时频率稳定性提出了更高的要求。为了实现DFB-LD的频率稳定,通过边频锁定与光电反馈回路的方法将激光频率锁定在H13C14N气体吸收谱线1548.956 nm的一侧。将光电探测模块、后续误差信号生成与处理模块和激光器驱动模块集成在一块模拟电路板上,从而有效地降低了系统的噪声;使用除法器代替减法器来产生鉴频信号,大大提高了系统灵敏度和稳频精度;通过这两项技术的改进,将DFB-LD的秒级频率稳定度提高了两个数量级,从稳频前的秒级频率稳定度3.67 × 10?8提高到稳频后的秒级频率稳定度2.34×10?10。实验结果表明,该DFB-LD稳频方案具有高的稳频精度,且系统结构简单、体积小、可批量生产,适合于无人机机载应用场景,是远距离相干测量系统的理想光源。  相似文献   

11.
为了降低星上通信系统的质量和体积、增强系统的温度稳定性和抗电磁干扰能力,采用了一个新方法,将光电振荡器用作星上微波本振源,产生微波信号,利用光纤转发,将微波信号的产生、分配、传输与变频处理融为一个系统,并进行了理论分析和实验验证。结果表明,基于光电振荡器产生了11.5GHz的微波本振信号,通过光纤进行多路转发,其中第1路信号频率与本振源相同,相位噪声为-100.5dBc/Hz@10kHz,第2路信号频率为本振信号的2倍,相位噪声为-86.6dBc/Hz@10kHz。与传统电学方法相比,该方法有显著成效,可提高转发效率,减小系统体积和重量,增强系统抗干扰性和温度稳定性,提高系统的带宽和微波信号质量、降低卫星通信成本。  相似文献   

12.
针对射频识别(RFID)系统中对本振信号的高质量要求,基于双模分频锁相频率合成的基本原理,提出了一种高稳定度低相噪的UHF波段RFID频率合成器的设计方法,着重对系统的电路参数进行了分析和仿真,并设计了基于FPGA的快速控制器用于参数配置。测试结果与仿真结果基本一致,该频率合成器及其控制器达到了UHF射频识别的应用要求。  相似文献   

13.
GPS接收机载波跟踪环设计与分析   总被引:1,自引:0,他引:1  
针对GPS接收机载波跟踪环环宽与跟踪的动态性能问题,在分析影响GPS信号动态性能的主要参数热噪声、晶振Allan相位噪声、晶振振动相位噪声和动态应力的基础上,通过对不同阶数的锁相环、锁频环跟踪门限分析与仿真,主要解决了如何设计GPS接收机的载波跟踪环路的带宽,并使系统性能达到最佳的问题,即使用环宽为18 Hz的二阶锁相环辅助环宽为10 Hz的三阶锁频环可以跟踪动态范围小于10 g、100 g/s的高动态信号。  相似文献   

14.
文章以栅格阵列封装(land grid array,LGA)模型为研究对象,分析了多层封装基板中的同步开关噪声(simultaneous switching noise,SSN)问题。首先利用频域仿真工具PowerSI得到了键合线和信号布线的S参数模型。然后通过在电路仿真工具HSPICE中加载封装结构的S参数模型和驱动器模型来仿真同步开关噪声。最后在设计中选取在多层基板上添加去耦电容的方式来减小同步开关噪声。仿真结果表明,通过在本LGA多层基板设计中添加110pF容值的去耦电容,可以较好地减少同步开关噪声,满足设计要求。  相似文献   

15.
快速有效的频率合成器的相位噪声性能仿真可以对频率合成器的设计实现提供有效的帮助.对此我们提出了一种仿真频率合成器整体相位噪声性能的新方法.首先对在Cadence下仿真得到的频率合成器中各模块相位噪声曲线进行拟合,然后在ADS下对应建立各模块的噪声模型,通过在ADS下仿真快速得到频率合成器整体的相位噪声性能.通过仿真验证了这种方法准确、快速.  相似文献   

16.
刘韬 《电子科技》2013,26(1):56-58
介绍了DDS的基本工作原理,阐述了DDS技术局限性,最终实现了一种基于FPGA+DDS 可编程低相位噪声的频率源,输出信号范围170~228 MHz。测试结果表明,该频率源具有高频率分辨率和低相位噪声等特点,能够满足通信系统对频率源的设计要求。  相似文献   

17.
一对多激光通信天线受结构和尺寸的限制,反射镜与安装平面只能单独研磨。虽然可根据面形测试结果对安装平面进行反复研磨,以保证摆镜安装后的面形精度,但该方法难度大、周期长、成功率低。为了减小加工难度,在保证正常研磨精度(5μm)的同时降低安装面平面度造成的安装应力和温度变形等外力影响,保证摆镜安装后的面形精度。研究了摆镜在力学作用下的面形精度变化和面形稳定性,优化设计了隔离结构,有效提高了摆镜的面形稳定性。测试结果表明,在测试波长为λ时,安装应力和温度升(降)载荷作用下摆镜面形精度的峰谷值由0.546λ提升到0.161λ,均方根值由0.099λ提升到0.019λ,完全符合设计要求。  相似文献   

18.
The aim of this paper is analysis and presenting a technique to reduce phase noise of frequency synthesizer for pure signal synthesis. To reduce phase noise of synthesizer, first, we present a mathematical and accurate model of phase noise in phase locked loop based frequency synthesizer with take into account noise of its component. Then we predict output phase noise in term of its parameters. Finally, we describe as effective technique for phase noise in frequency synthesizer. The simulation results show the performance of the frequency synthesizer for the High Speed communication system.  相似文献   

19.
为满足某雷达信号设计要求,文中基于国产小数锁相环芯片GM4704产生7.12~9.12 GHz的信号,采用传统的PLL方式产生,低相位噪声、低杂散的频率综合器。同时,给出了设计过程并对相关的设计参数进行分析,应用相关的PLL仿真软件对环路滤波器进行仿真设计,通过实际电路测试,相位噪声达到-97 dBc/Hz@1 kHz与理论计算较接近,杂散达到-70 dB。  相似文献   

20.
吴莉 《电子世界》2013,(23):80-80
本文基于SystemView系统仿真平台,设计了FSK通信系统的仿真模型,对参数进行设定,在模块中加入噪声源,模拟实际信道中的噪声。调制部分采用键控法产生FSK信号,解调部分采用过零检测法还原出伪随机序列。仿真结果表明,利用SystemView软件仿真,可以很有效地得到所设计电路的输出结果,体现了SystemView进行系统仿真的可行性与实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号