首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
报道了利用激光二极管端面抽运Nd∶YAG晶体,通过Cr4+∶YAG晶体可饱和吸收被动调Q,KTP晶体腔外倍频及BBO晶体腔外四倍频,实现266 nm连续脉冲输出。简要分析了被动调Q基本原理,计算并模拟了1064 nm基频光在理想状态下Cr4+∶YAG晶体不同初始透过率对脉冲激光单脉冲能量的影响。LD抽运功率为4.8 W时,得到266 nm紫外激光平均输出功率为5.63 mW,单脉冲能量约为0.5μJ。在紧凑型毫瓦级266 nm激光器实用化方面取得了一定进展。  相似文献   

2.
Ca4GdO(BO3)3(GdCOB)是一种新型的自倍频晶体.利用氙灯作泵浦源,对单掺的Nd∶GdCOB和双掺的Cr∶Nd∶GdCOB两种自倍频晶体实现了1061nm~530.5nm自由运转的自倍频转换.单掺和双掺晶体的泵浦阈值能量分别为1.0J和0.92J,自倍频光的最大输出能量分别为1.96mJ和2.46mJ.利用脉冲染料激光作泵浦源,对Nd∶GdCOB晶体获得了1331nm基频光和655nm自倍频红光运转,并获得了530.5nm自倍频绿光输出.  相似文献   

3.
侯学元  黄俊刚等 《激光技术》2002,26(5):350-353,356
Ca4GdO(BO3)3(GdCOB)是一种新型的自倍频晶体。利用氙灯作泵浦源,对单掺的Nd:GdCOB和双掺的Cr:Nd:GdCOB两种自倍频晶体实现了1061nm~530.5nm自由运转的自倍频转换。单掺和双掺晶体的泵浦阈值能量分别为10J和092J,自倍频光的最大输出能量分别为196mJ和246mJ。利用脉冲染料激光作泵浦源,对Nd:GdCOB晶体获得了1331nm基频光和655nm自倍频红光运转,并获得了530.5nm自倍频绿光输出。  相似文献   

4.
实验研究了一种基于大模场面积光子晶体光纤飞秒激光技术的紫外飞秒激光源.分析了群速失配下的倍频光和基频光的走离长度,并实验比较了不同长度的BBO晶体的倍频功率和效率.分别采用5 mm和0.18 mm的两块BBO晶体,在Ⅰ类相位匹配条件下,对光子晶体光纤放大器输出的脉宽为110 fs,重复频率50 MHz的1040 nm飞秒激光进行腔外二倍频(SHG)和四倍频(FHG),获得了高功率紫外飞秒激光.在20 W的平均功率抽运下,获得了8.88 W的二倍频绿光输出,转换效率为44.4%.同时获得了656 mW的四倍频260 nm紫外激光,单脉冲能量13 nJ,最高功率时二次谐波(SH)到四次谐波(FH)的转换效率为7.39%.  相似文献   

5.
160 W激光二极管抽运电光调Q主振荡功率放大器绿光激光器   总被引:1,自引:1,他引:0  
介绍了激光二极管抽运的高重复频率、大能量绿光固体激光器研制成果。激光器采用电一光调Q,主振荡功率放大器(MOPA)结构。根据放大器的设计要求,研制了抽运功率达12kW,占空比为15%的激光二极管侧抽运Nd:YAG棒状激光模块。在重复频率500Hz,脉冲宽度15ns条件下,实现了单脉冲能量1.27J的1064nm输出,光束质量β小于2.5。采用Ⅱ类相位匹配KTP晶体外腔倍频,在基频能量1J,重复频率400Hz,抽运功率密度67MW/cm^2时,获得大于405mJ的绿光输出(平均功率达160W),倍频效率约为40%,绿光光束质量β〈5。  相似文献   

6.
啁啾脉冲放大(CPA)技术已被广泛应用在几太瓦(TW)至1000 TW的许多高功率激光系统中.光学参量放大器有着宽的放大带宽,能支持短至几飞秒激光脉冲的无光谱畸变放大.近年来,一种基于光学参量啁啾脉冲放大(OPCPA)技术的飞秒激光系统,已被提出和成功演示.我们实验室正在建造几太瓦级的OPCPA激光系统,该系统要求一台纳秒级的激光装置作为OPCPA系统的抽运源.本文介绍我们已建成的台式高功率倍频Nd∶硅酸盐玻璃激光装置.其输出波长532 nm、脉宽0.5 ns、能量15 J,光束口径为40 mm. 这台Nd∶硅酸盐玻璃激光装置的种子源与OPCPA激光系统一样来自于同一台飞秒1064 nm激光振荡器,它是一台由13瓦的Ar离子激光抽运的自锁模掺钛蓝宝石激光器,产生120 fs、带宽10 nm的1064 nm脉冲列.脉冲列进入一个光栅展宽器,把激光脉冲宽度展宽到0.3 ns水平,然后分出一束作为OPCPA的种子源,另一束进入一台重复频率1 Hz的Nd∶硅酸盐玻璃再生放大器,将脉冲能量从0.5 nJ放大到几毫焦耳,脉冲宽度展宽到0.7 ns. 从再生放大器输出的激光脉冲进入Nd∶硅酸盐玻璃激光放大链进行放大,最后由KDP倍频晶体对输出的1064 nm激光倍频,获得0.5 ns、15 J的绿光.输出的绿光由光学系统导向光学参量放大器,给OPCPA系统的1064 nm的啁啾种子脉冲作同步抽运,同步精度可达数十飞秒量级.(PB6)  相似文献   

7.
波长介于200~300 nm的短波紫外全固态激光(DPL)具有波长短、光子能量高、波段特殊,可实用化与精密化等特点,在激光精密加工、前沿科学及航空航天领域具有重大应用价值。目前,高功率短波紫外激光实现主要基于Nd:YAG晶体1 064 nm激光四倍频实现266 nm激光输出,然而其实用化特性严重受制于现有的四倍频非线性晶体材料。通过新型高功率高光束质量1.1μm(1 112 nm、1 123 nm)Nd:YAG近红外基频激光研究,并以此为泵浦源,创新性将综合性能优良的紫外CBO非线性光学晶体从紫外三倍频应用拓展到高功率短波紫外四倍频278和281 nm应用的最新研究进展,有望获得一种可实用化高功率新型短波紫外全固态激光源。  相似文献   

8.
中心波长为800 nm、脉宽为60 fs、重复频率为10 Hz的飞秒激光分为强弱两束,能量较强一束经I类相位匹配的BBO晶体倍频,之后与另一束光非共线和频得到三次谐波输出.实验得出基频和倍频光能量达到最佳配比时,三次谐波的转换效率最大;系统输出激光携带一定负啁啾可以补偿色散,提高三次谐波的转换效率.最终,当基频和倍频光的能量分别为2.38 mJ和0.588 mJ,系统输出激光带有9.66×10<'3> fs<'2>的负啁啾时,得到了中心波长为267 nm、单脉冲能量为230μJ的三次谐波输出,其转换效率高达19%.  相似文献   

9.
报道了采用KTP晶体和LiIO3晶体实现4~5μm可调谐激光输出的光参量振荡器(OPO)至差频产生器(DFG)的全固化结构和相应的实验结果。其中光参量振荡器的抽运源为倍频Nd∶YAG激光,差频产生器的抽运源分别是上述光参量振荡器激光和Nd∶YAG基频激光经KTP倍频晶体后剩余的1.064μm激光。实验中Nd∶YAG基频脉冲激光脉宽12 ns,单脉冲能量300 mJ。观察到最大倍频效率达到66.7%,KTP参量量子转换效率达到50%,差频量子转换效率为1.5%,在4.45μm得到了单脉冲100μJ的激光输出。差频光的调谐范围为4.1~4.5μm,发散角为垂直方向12 mrad,水平方向4 mrad。  相似文献   

10.
李昕奇  曲大鹏  陈晴  刘天虹  郑权 《红外与激光工程》2020,49(12):20201070-1-20201070-5
设计了一种采用不同波长的蓝光二极管合光作为抽运源并采用双端抽运的方式抽运Pr:YLF晶体320 nm紫外激光器。该激光器结构采用V型折叠腔结构,使用波长分别为444 nm和469 nm、抽运功率分别为3 W和1.4 W的蓝光激光二极管作为抽运源,对12 mm长、0.3%掺杂浓度的Pr:YLF晶体进行抽运,并且使用三硼酸锂晶体作为倍频晶体来实现倍频,匹配方式为I类相位匹配。通过对谐振腔参数进行优化,当5700 mW的抽运功率注入晶体时,输出了1005 mW最大输出功率的320 nm紫外连续激光,光光转换效率约为17.6%。  相似文献   

11.
通过准相位匹配技术,采用1μm波段高功率窄谱线连续光纤激光放大器抽运高二次谐波转换效率周期性极化晶体,是实现高光束质量、小型化、高功率连续绿光激光器的一个非常有前途的方向。实验自主研发了高效率主振荡功率放大(MOPA)全光纤保偏放大模块,获得中心波长为1064.25nm,线宽为0.035nm的30 W连续线偏振激光,并以此作为基频光抽运国产周期极化钽酸锂(PPSLT)晶体进行了外腔单通倍频实验。保持PPSLT晶体的控制温度为145.6℃,在抽运光功率为21.5W时得到了2.1W的绿光输出。实验分析了温度、基频光功率密度和Boyd-Kleinman聚焦因子对倍频光转换效率的影响。实验过程中没有出现饱和现象,进一步提高抽运功率有望获得更高功率的绿光。  相似文献   

12.
LD抽运Nd:YVO4连续3波长激光器   总被引:1,自引:0,他引:1  
报道了一种利用激光二极管(LD)端面抽运Nd:YVO4激光晶体,通过硼酸铋(BIBO)晶体的腔内和频(SFM)与倍频(SHG),实现3个二次谐波连续激光同时输出的3波长激光器.利用Nd:YVO4晶体的两条发射谱线(分别为1064 nm和1084 nm)作为基频光,并选掸长度为1.5 mm,Ⅰ类临界相位匹配方式切割(对于1064 nm倍频)的BIBO作为非线性晶体,通过调节BIBO晶体对3个非线性过程(1064 nm倍频,1084 nm倍频及1064 nm与1084 nm和频)的相位因子,即非线性过程的转换效率,使激光器同时获得了两个倍频光和一个和频光,即3个波长:532 nm,537 nm和542 nm激光输出.实验结果表明当两个基频光波长相差较小时,采用相位允许角小的非线性晶体同时进行腔内和频与倍频是获得多波长固体激光器的一种实用方法.  相似文献   

13.
大能量窄脉宽高平均功率绿光激光器   总被引:2,自引:0,他引:2  
研制了在大能量窄脉宽情况下实现高平均功率输出的绿光激光系统。利用激光二极管抽运Nd∶YAG晶体,采用RTP晶体电光调Q和主振荡功率放大的功率分摊技术,实现大能量窄脉宽高重复频率532 nm绿光激光输出。输出基频光波长1064 nm,脉冲平均能量213 mJ,工作频率100 Hz,光-光转换效率12%。采用Ⅱ类相位匹配高抗灰迹KTP晶体腔外倍频,输出绿光波长532 nm,脉冲平均能量127 mJ,工作频率100 Hz,脉冲宽度7.2 ns,光束质量20mm.mrad,532 nm插头效率2.1%。  相似文献   

14.
连续波Nd:YVO4/LBO稳频倍频红光全固态激光器   总被引:7,自引:5,他引:2  
利用激光二极管(LD)端面抽运YVO4-Nd∶YVO4复合晶体,采用四镜环形谐振腔及Ⅰ类临界相位匹配(CPM)LBO晶体进行腔内倍频,在腔中插入TGG晶体和λ/2波片组成的光学单向器,设计了满足热不灵敏条件和最佳倍频条件的谐振腔型,实现了全固态连续稳频倍频红光激光器。在19 W抽运功率下,同时获得了610 mW的671 nm单频红光输出和400 mW的单频1342 nm红外光输出。红光30 min内输出功率波动小于±0.6%。自由运转时,基频光(1342 nm)1 min频率漂移为±5 MHz,锁定后基频光1 min频率稳定性优于±1 MHz。  相似文献   

15.
全固态高输出功率单频Nd:YVO4/KTP激光器   总被引:1,自引:2,他引:1  
利用光纤耦合输出的半导体激光器(LD)端面抽运Nd∶YVO4晶体,激光谐振腔采用四镜环形腔结构,通过KTP晶体内腔倍频,获得了高功率全固态连续单频绿光激光输出。根据临界相位匹配下椭圆高斯光束的倍频理论,通过旋转Nd∶YVO4晶体的方向选取合适的基频光偏振方向,使KTP晶体的走离角所在平面与谐振腔弧矢面平行,可提高内腔倍频转换效率。当抽运功率为20 W时,激光器最大单频绿光输出功率达4.8 W。作为对比,控制基频光偏振方向使KTP晶体的走离角所在平面与谐振腔子午面平行时,激光器最大单频绿光输出功率为4.1 W。对比两种情形下的实验结果,激光器的光-光转换效率从21.8%提高到25.5%。  相似文献   

16.
全固态447 nm连续激光器   总被引:1,自引:0,他引:1  
报道了一台采用激光二极管(LD)侧面抽运Nd∶YAP晶体的全固态腔内三倍频447 nm连续(CW)蓝光激光器.对几种常用的晶体进行分析对比后,选取Nd∶YAP晶体作为增益介质产生1341.4 nm基频光,腔内采用Ⅰ类临界相位匹配(CPM)LBO晶体进行倍频(SHG)产生670.7 nm波长激光,基频光与倍频红光再经Ⅱ类临界相位匹配的KTP晶体和频(SFM)获得447.1 nm蓝光输出.采用四镜折叠腔结构,通过谐振腔稳定性分析,优化选取了合适的谐振腔参数.实验对比了不同腔长的输出特性,最终在[534 W抽运功率下,获得了最高功率为114 mW的连续447.1 nm蓝光输出,光-光转换效率为0.02%,并分析了效率低的原因.  相似文献   

17.
报道了利用激光二极管端面抽运Nd∶YAG晶体,通过LBO非线性晶体腔内倍频实现的561nm激光输出。LBO晶体尺寸为2mm×2mm×10mm,采用Ⅰ类相位匹配切割。抽运功率为5W时,561nm的最大输出功率为123mW,此时的光-光转换效率为2.46%。实验中发现激光器很容易同时出现556nm及558nm倍频光。从非线性转换效率对基频光振荡的影响角度出发,分析了1112nm与1116nm谱线起振的原因。作为对比,利用允许角范围小的KTP作为倍频晶体进行了同样的实验,KTP晶体的尺寸为2mm×2mm×8mm,采用Ⅱ类相位匹配切割。实验结果显示,在KTP晶体倍频情况下,激光器很容易实现561nm单谱线激光输出。实验结果与理论分析相一致。  相似文献   

18.
使用磷酸钛氧钾(KTiOPO_4,KTP)晶体,采用斯托克斯参量振荡器与太赫兹波表面垂直出射的斯托克斯参量放大器相结合的实验方案,获得了大能量的太赫兹波输出。抽运源是调Q脉冲激光器,输出波长为1064.2 nm,脉宽为7.5 ns,脉冲重复频率为1 Hz。斯托克斯光波长为1086.2 nm,抽运光与斯托克斯光的夹角为4.4°,太赫兹波频率为5.7 THz。抽运光路上的延时装置可以保证抽运光脉冲与待放大斯托克斯光脉冲有很好的时间重合性。当抽运光脉冲能量为770 mJ、待放大斯托克斯光脉冲能量为16.8 mJ时,放大后斯托克斯光脉冲能量为185.4 mJ,太赫兹波脉冲能量最大为6.4μJ。  相似文献   

19.
激光二极管(LD)抽运全固态激光器具有效率高、体积小、价格低、使用维护方便等优点,LD抽运固体激光通过频率变换产生紫外激光是目前的研究热点之一.目前已有用LD抽运Nd∶YAG激光器经四倍频在266 nm处输出20.5 W的报道,国际上广泛开展了全固态紫外激光的研究,研究主要集中在LD抽运Nd∶YAG调Q激光进行三倍频、四倍频,以及采用外腔谐振技术的连续Nd∶YAG激光的四倍频技术,对于连续输出的全固化三倍频激光(355 nm)还很少见报道. 实验中的激光介质为φ4 mm×10 mm的Nd∶YAG,两端镀1.064 μm及808 nm高增透膜,采用球面镜作为腔镜,二倍频晶体为II类位相匹配的KTP晶体,晶体尺寸为5 mm×5 mm×7 mm,三倍频晶体采用Ⅱ类位相匹配的LBO晶体,晶体尺寸为4 mm×4 mm×10 mm,R=100 mm平凹镜为全反射镜,R=30 mm的平凹镜为输出镜,对1.064 μm及532 nm高反射同时对紫外光355 nm高透过;三倍频晶体放在腔内的束腰处,腔长约120 mm,接近共焦腔.在半导体抽运Nd∶YAG全固态激光的基础上,采用内腔倍频技术,当半导体注入抽运功率为8 W时,产生约3 mW连续运转的355 nm紫外激光,当采用声光调Q运转时,产生的三倍频紫外激光输出平均功率超过50 mW.(OC2)  相似文献   

20.
折返点匹配的宽带二倍频实验研究   总被引:2,自引:0,他引:2  
在二次谐波转换中,基频光和倍频光的群速失配是限制转换带宽的主要因素。利用折返点匹配的宽带谐波转换技术能同时实现基频光和倍频光的相位匹配和群速匹配,理论计算表明在折返点匹配的情况下,倍频转换带宽将显著增加。分别利用厚度10 mm,氘含量12%的KD*P晶体和厚度12 mm的KDP晶体对中心波长为1053 nm,谱宽为31 nm,能量为620μJ的基频光进行折返点匹配二倍频和传统二倍频的对比实验,前者取得了22 nm的转换带宽,远大于后者7 nm的转换带宽。实验结果证实了理论计算的正确性,显示了折返点匹配宽带谐波转换技术的优越性。相应地,前者转换效率为25%,大于后者20%的转换效率,导致倍频转换效率较低的主要因素是入射基频光的光束质量和光谱质量较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号