首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用水热法以Cu片为基底,Cu(NO_3)_2为铜源,十二烷基苯磺酸钠(SDBS)为添加剂,通过调节Ag^+浓度,制备不同Ag掺杂Cu_2O(Ag/Cu_2O)薄膜。研究了样品的光电性能及电容-电压特性等,并用X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)对其晶体结构、形貌及组成进行了表征。结果表明,当体系中Ag^+浓度为0.03 mmol/L时,Ag/Cu_2O薄膜的光电性能最佳,光电压和光电流密度分别为0.458 5 V和3.011 mA·cm-2,比Cu_2O薄膜分别提高了0.205 1 V和1.359 mA·cm-2;Ag/Cu_2O薄膜的载流子浓度达到3.10×1020 cm-3,比Cu_2O薄膜提高了2.38×1020 cm-3。XRD,SEM和EDS结果显示,Ag/Cu_2O薄膜的结晶性比Cu_2O薄膜好,但其粒径有所增大,Ag/Cu_2O薄膜中Ag元素的原子数分数为0.13%。  相似文献   

2.
用热蒸发法和热处理制备稀土Dy掺杂金属氧化物CdO,ZnO和SnO2薄膜,研究不同Dy掺杂浓度及热处理对3种薄膜性能的影响。XRD和SEM测试结果显示:适当的Dy掺杂和热处理可改善薄膜的结构特性,使薄膜表面的致密性变好。CdO,ZnO和SnO2薄膜的最佳掺Dy原子数分数为5%,5%和3%。掺Dy后Cd O,ZnO和SnO2薄膜的导电类型均为n型,电阻值降低约一个数量级。Dy掺杂使得薄膜的致密性增加而导致光透过率降低。制备的薄膜都是直接带隙半导体,相应的光学带隙:Cd O约2.232 eV,CdO∶Dy(Dy原子数分数5%)的略增为2.241 e V,ZnO薄膜约为3.31 eV;ZnO∶Dy(Dy原子数分数5%)约3.25 eV,SnO2薄膜约3.07 eV,SnO2∶Dy(Dy原子数分数3%)约3.03 eV。  相似文献   

3.
首先报道并系统地研究了掺杂YBa_2Cu_(3-x)M_xO_y(M=Fe,Al,Zn)体系的红外光谱,证明了YBa_2Cu_3O_(7-δ)中:p1(630cm~(-1))红外峰在正交相中确实属于一维Cu—O链上氧空位诱导的准局域模和α轴上Cu_1—O_5—Cu_1局域模的叠加;p2(580cm~(-1))红外峰在高氧相中不能观测到是由于受二维电子气的屏蔽,而并非是二维CuO_2网络中氧空位诱发的Cu—O准局域振动模;p3(550cm~(-1))红外峰即沿c轴O_4—Cu_1—O_4局域振动模,由于YBa_2Cu_3O_(7-δ)的二维特性不受二维电子气的屏蔽效应的影响,因此它在正交相和四角相强度变化不明显。同时还讨论了掺杂对YBa_2Cu_3O_(7-δ)超导电性及结构的影响。  相似文献   

4.
N掺杂p型MgZnO薄膜的制备与性能研究   总被引:1,自引:0,他引:1  
利用磁控溅射设备,Mg0.04Zn0.96O陶瓷靶材,以高纯的氮气与氩气混合气体作为溅射气体,在石英衬底上沉积获得了N掺杂p型Mg0.07Zn0.93O薄膜,薄膜的电阻率为21.47Ω·cm,载流子浓度为8.38×1016 cm-3,迁移率为3.45cm2/(V·s)。研究了该薄膜的结构与光学性能。实验结果显示,其拉曼光谱中出现了位于272和642cm-1左右与NO相关的振动模。低温光致发光光谱中,可以观察到位于3.201,3.384和3.469eV的3个发光峰,其中位于3.384eV的发光峰归因为导带电子到缺陷能级的复合发光,而位于3.469eV的发光峰归因为受主束缚激子(A0X)的辐射复合,这说明该N掺杂MgZnO薄膜的空穴载流子主要来自NO受主的贡献。  相似文献   

5.
利用灯丝热解CVD方法以甲烷和氢气为原料、以单质硼为掺杂源,制备了高晶体品质的硼掺杂多晶金刚石薄膜。其晶体结构及晶格常数与天然立方结构金刚石相同,硼掺杂后未引起金刚石薄膜中非金刚石碳含量的增加。证实了硼掺杂金刚石薄膜为p-型半导体材料,其最大硼掺杂浓度接近10~(20)cm~(-3),最大室温空穴载流子浓度达到10~(18)cm~(-3)。由硼掺杂金刚石薄膜红外吸收数据及类氢模型的估算证实了硼在金刚石的禁带中引入了位于价带以上约0.35eV的受主能级。  相似文献   

6.
用磁控溅射方法在Si衬底上制备了Al掺杂Mg2Si薄膜,通过X射线衍射仪(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和分光光度计研究了掺杂含量对Mg2Si薄膜组分、表面形貌、粗糙度及光学带隙值的影响,XRD结果表明随着Al掺杂量的增加, Mg2Si衍射峰先增强后减弱. SEM及AFM的结果表明随掺杂量的增加,结晶度先增加后降低,晶粒尺寸减小,粗糙度先增加后降低.得到掺杂后薄膜间接跃迁带隙范围为0.423~0.495 eV,直接跃迁带隙范围为0.72~0.748 eV,掺杂前薄膜间接跃迁带隙和直接跃迁带隙分别为0.53 eV、0.833 eV.  相似文献   

7.
研究了退火温度对原子层沉积(ALD)生长的铝掺杂氧化锌(AZO)薄膜光电性能的影响,结果发现:AZO薄膜在600℃退火后,X射线衍射峰的半峰全宽从未退火时的0.609°减小到0.454°,晶体质量得到提升;600℃退火后,薄膜的表面粗糙度从未退火时的0.841 nm降低至0.738 nm;400℃退火后,薄膜的载流子浓度和迁移率均达到最大值,分别为1.9×10~(19) cm~(-3)和4.2 cm~2·V~(-1)·s~(-1),之后随着退火温度进一步升高,载流子浓度和迁移率降低;退火温度由300℃升高到600℃过程中薄膜的吸收边先蓝移后红移。  相似文献   

8.
采用溶胶-凝胶旋涂法(Sol-Gel Spin-Coating Method)制备了Al掺杂量为3.00at%,N掺杂量分别为6.00at%,7.00at%,8.00at%和9.00at%的Al/N共掺杂TiO2薄膜样品。对样品测试的结果表明,共掺杂样品依旧保留了TiO2的基本结构,并且Al/N共掺杂样品的晶粒尺寸有不同程度的减小,使样品表面得以修饰,变得更加均匀、平整。共掺杂样品吸收边都出现了不同程度的红移,在紫外光区以及可见光区的吸光性都有所增强。N掺杂量为7.00at%时,(101)衍射峰值最大,峰型最尖锐,所得到的TiO2薄膜的光学性能最好。共掺杂后的样品与本征TiO2相比带隙值都有所减小,且最小值为2.873eV。以上结果表明Al/N共掺杂TiO2薄膜使其光学性能得到了改善。  相似文献   

9.
本文介绍了氧氮化物SiO_xN_r中的辐射效应。这种氧氮化物薄膜由热生长SiO_2层在1000℃氨-氮气氛中氮化处理形成,其特点具有高的原始正电荷陷阱密度(3-6×10~(11)电荷/cm~2)和低的界面态电荷密度(2-4×10~(10)态/eV/cm~2)。采用俄歇光谱分析薄膜的化学成份指出,在整个氧氮化物薄层内部都有氮的分布,其中在界面附近分布的浓度较高,没有发现可动离子污染或在高电场下有电荷注入现象。在辐射剂低于1×10~6拉德(Si)的场合下,这种氮氧化物的辐射灵敏度比热氧化物改善2-3倍,并且也不增加界面态密度。最后讨论了一种为满足界面附近的正电荷俘获的掺杂方法。  相似文献   

10.
利用直流反应磁控溅射法,以N2O为N掺杂源,用Al-N共掺技术制备了p型Zn0.95Mg0.05O薄膜.用X射线衍射分析(XRD)、Hall测试仪和紫外可见(UV)透射谱等研究方法对其晶体结构、电学性能和禁带宽度进行分析.XRD分析结果表明,Zn0.95Mg0.05O薄膜具有良好的晶格取向,Hall测试的结果所得p型Zn0.95Mg0.05O薄膜最低电阻率为58.5Ω·cm,载流子浓度为1.95×1017 cm-3,迁移率为0.546cm2/(V·s),UV透射谱所推出的薄膜禁带宽度中,纯ZnO,p型Zn0.95Mg0.05O和p型Zn0.9Mg0.1O分别为3.34,3.39和3.46eV,可以看出Mg在ZnO禁带宽度中起了调节作用.  相似文献   

11.
利用直流反应磁控溅射法,以N2O为N掺杂源,用Al-N共掺技术制备了p型Zn0.95Mg0.05O薄膜.用X射线衍射分析(XRD)、Hall测试仪和紫外可见(UV)透射谱等研究方法对其晶体结构、电学性能和禁带宽度进行分析.XRD分析结果表明,Zn0.95Mg0.05O薄膜具有良好的晶格取向,Hall测试的结果所得p型Zn0.95Mg0.05O薄膜最低电阻率为58.5Ω·cm,载流子浓度为1.95×1017 cm-3,迁移率为0.546cm2/(V·s),UV透射谱所推出的薄膜禁带宽度中,纯ZnO,p型Zn0.95Mg0.05O和p型Zn0.9Mg0.1O分别为3.34,3.39和3.46eV,可以看出Mg在ZnO禁带宽度中起了调节作用.  相似文献   

12.
将铜片放入CuSO_4溶液中蒸煮,经过一段时间后,在其表面得到Cu_2O薄膜。改变蒸煮时间,利用原子力显微镜(AFM)对不同蒸煮时间的Cu_2O薄膜观察,得到相应的Cu_2O薄膜表面形貌图。实验发现,铜片在CuSO_4溶液中的蒸煮时间越长,表面颗粒的尺寸越大,越致密。当蒸煮时间达到60min时,Cu_2O晶粒尺寸最大可达到1μm。由光致发光图谱发现,蒸煮时间越长,Cu_2O带隙越宽。  相似文献   

13.
报道了利用直流反应磁控溅射以Al,N共掺杂技术生长p型ZnO薄膜.ZnO薄膜在不同衬底温度下沉积于α-Al2O3(0001)衬底上,N来自NH3与O2的生长气氛,Al来自ZnxAl1-x(x=0.9)靶材.利用XRD,AFM,Hall,SIMS和透射光谱对其性能进行了研究.结果表明,ZnO薄膜具有高度c轴择优取向,450℃、600℃分别实现了p型转变,电阻率为102~103Ω*cm,载流子浓度为1015~1016cm-3,迁移率为0.5~1.32cm2/(V*s).薄膜中Al原子促进了N原子的掺入.实验还表明,p-ZnO薄膜在可见光区域具有很高的透射率(约为90%),室温下光学带宽为3.28eV.而在450℃生长的p-ZnO具有较小的晶粒度和表面粗糙度.  相似文献   

14.
直流反应磁控溅射Al,N共掺方法生长p型ZnO薄膜及其特性   总被引:10,自引:1,他引:9  
报道了利用直流反应磁控溅射以Al,N共掺杂技术生长p型ZnO薄膜 .ZnO薄膜在不同衬底温度下沉积于α Al2 O3 (0 0 0 1)衬底上 ,N来自NH3 与O2 的生长气氛 ,Al来自ZnxAl1-x(x =0 9)靶材 .利用XRD ,AFM ,Hall,SIMS和透射光谱对其性能进行了研究 .结果表明 ,ZnO薄膜具有高度c轴择优取向 ,4 5 0℃、6 0 0℃分别实现了p型转变 ,电阻率为 1e2 ~ 1e3 Ω·cm ,载流子浓度为 1e15~ 1e16cm-3 ,迁移率为 0.5~ 1.32cm2 / (V·s) .薄膜中Al原子促进了N原子的掺入 .实验还表明 ,p ZnO薄膜在可见光区域具有很高的透射率 (约为 90 % ) ,室温下光学带宽为 3 2 8eV  相似文献   

15.
该文采用溶胶-凝胶法在LaNiO_3/Pt/Ti/SiO_2/Si基片上制备了掺杂La元素的Pb_(1-0.05)La_(0.05)ZrTiO_3(PLZT)、掺杂Sr元素的Pb_(1-0.05)Sr_(0.05)ZrTiO_3(PSZT)、掺杂La和Sr元素的Pb_(1-0.1)La_(0.05)Sr_(0.05)ZrTiO_3(PLSZT)及未掺杂的锆钛酸铅(PZT)薄膜样品。对不同掺杂情况的样品分别进行了压电系数、电滞回线、介电特性的测试。结果表明,双掺杂样品PLSZT薄膜具有比其他样品更好的铁电性能,其剩余极化强度(P_r)为13.2μC/cm~2,饱和极化强度(P_s)为28.4μC/cm~2,矫顽场(E_c)为54.8 kV/cm;双掺杂样品PLSZT薄膜的压电系数(d_(33))比其他3种样品高,达到153 pC/N。掺杂后的样品与未掺杂的样品相比,其介电常数有略微提高;单掺杂La的样品的介电特性在高频环境下更稳定。  相似文献   

16.
RF磁控溅射制备N掺杂Cu2O薄膜及光学特性研究   总被引:4,自引:3,他引:1  
利用射频(RF)磁控溅射沉积技术,采用Cu2O陶瓷靶作为溅射靶,在N2和Ar气的混合气氛下制备了Cu2O薄膜。通过改变衬底温度和N2流量,研究了RF磁控溅射沉积法对Cu2O薄膜的生长行为、物相结构、表面形貌及光学性能的影响。结果表明,衬底温度为300℃时,低N2流量(12sccm)下沉积的薄膜结构为Cu2O和CuO的混合相,N2流量增大至12sccm时薄膜结构转变为单相的Cu2O;不同N2流量下制备的薄膜均呈现三维的结核生长模式,其表面粗糙度的均方根(RMS)值依赖于N2流量,低N2流量下薄膜表面粗糙度的RMS值随N2流量的增大而增大,高N2流量下,RMS值随N2流量的增大而减小,并在一定N2流量范围内趋于稳定;不同N2流量下制备的薄膜均在475nm附近出现发光峰,峰的相对强度随N2流量的增加而减弱,峰位随N2流量的增加出现蓝移,薄膜的光学带隙Eg约为(2.61±0.03)eV。  相似文献   

17.
O2压对脉冲激光沉积ZnO薄膜性能的影响   总被引:1,自引:0,他引:1  
采用脉冲激光沉积(PLD)法在Al2O3(0002)衬底上制备了具有高c轴择优取向的ZnO薄膜.用X射线衍射(XRD)、原子力显微镜(AFM)、霍尔电导测量和透射光谱等表征技术研究了工作O2压对ZnO薄膜的结晶特性、电学和光学性能的影响.研究结果显示:在133×10-1~266×10-2 Pa内,ZnO薄膜的晶粒尺度随工作O2压的增加而增加,晶体结构趋于完整,表面更加平整;当工作O2压为266×10-1 Pa时,ZnO薄膜的表面粗糙度有所增加,薄膜的结晶质量恶化;工作O2压的不同导致ZnO薄膜的电学、光学特性的变化.  相似文献   

18.
本文对于低压化学汽相沉淀方法沉积的多晶硅薄膜的电导性能进行了研究,并与大气压下沉积的薄膜的导电性能作了比较。低压薄膜在580℃和620℃下沉积成,然后用离子注入法掺入磷。在620℃下沉积的薄膜是多晶膜,而在580℃下沉积的薄膜最初是无定形膜,但经过热处理后,它就变成结晶膜。对于两种不同掺磷剂量的低压膜,研究了退火温度对电阻率的影响,发现电阻率随退火温度的升高而减小。580℃下沉淀的薄膜经退火后,它的电阻率总是比620℃下沉淀的薄膜的电阻率低,而且在退火温度较低的情况下,两者的差别最为显著。在第二组实验中,注入的磷量范围很宽,相当于平均掺杂浓度在2×10~(15)—2×10~(20)cm~(-3)之间。只有在浓度低于2×101~(15)cm~(-3)和高于2×10~(20)cm~(-3)的情况下,电阻率才是掺杂浓度的一个慢变化函数(Slowfunction);而浓度在2×10~(15)cm~(-3)和2×10~(20)cm~(-3)之间时,掺杂浓度稍有改变就会使电阻率发生很大的变化。如上所述,在580℃沉淀的薄膜,其电阻率总是最低,在掺杂浓度居于中间的情况下,这尤其显著。测量了霍尔迁移率,发现它在掺杂浓度近于6×10~(18)cm~(-3)时有一最大值,而且随掺杂浓度降低急速减小。可以预料,所观察到的霍尔迁移率的这种变化特性与薄膜是由含有大量载流子陷阱的晶粒间界环绕的微晶构成这一解释相一致。  相似文献   

19.
采用激光分子束外延法在Si(111)衬底上制备出沿c轴取向的AlN薄膜,在此基础上制备了Au/AlN/Si金属-绝缘体-半导体(MIS)结构。研究了结构的电流传输机制、AlN/Si界面处的界面态密度值及分布情况。结果表明:AlN/Si异质结具有很好的整流特性,电流传输符合空间电荷限制传输机制,理想因子为2.88;结构的界面态密度约为1.1×10~(12) eV~(-1)·cm~(-2),主要分布在距离Si衬底价带顶0.26eV附近,由生长过程中引入的O杂质、N空位/N替代和Si原子代替N原子形成的Al-Si键组成。  相似文献   

20.
电子束掺杂磷   总被引:1,自引:0,他引:1  
本文提出了一种新的半导体掺杂方法.将掺杂杂质涂敷在待掺杂的半导体表面,利用连续电子束辐照实现了掺杂.其结深可由电子束的参数调节加以控制. 对掺磷的电子束掺杂层进行测量分析,表明,N_P=3.5 × 10~(10)cm~(-3),层内N(x)的变化范围为 10~(12)-10~(20)cm~(-3),μ(x)为 57-130(cm~2/V·scc);低能电子衍射图案呈单晶衍射点和菊池线;沟道背散射测量电子束掺杂层损伤比离子注入的小得多.用这一掺杂法研制成功的平面二极管,性能良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号