首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
交织器的引入使Turbo码对不同信息位具有明显的不等保护特性,从而对其性能产生影响。为了提高Turbo码译码性能,在给定的S距离伪随机交织器下,首先通过对多组随机输入信息序列的位误比特率仿真分析,找到对Turb0码性能影响较大的关键比特位置,然后在对Turbo码不等保护特性和已知比特Turbo码进行理论分析和研究的基础上,提出了关键比特不等保护和结合已知比特的Turbo码不等保护两种方案。最后,对提出的方案进行了仿真验证,结果表明在交织长度分别为200和400两种条件下,两种保护方案在高信噪比时与未保护相比均有0.2dB以上增益.且结合已知比特的Turbo码不等保护方案比关键比特保护方案性能更优。  相似文献   

2.
深空测控中为获得较高的编码增益需要用到信道编译码技术。Turbo码是一种逼近香农限的高性能的信道编译码,其中,交织器的设计是影响Turbo码性能的关键因素之一。论述了交织器设计的基本准则,并详细介绍了3种常见的随机性交织器:伪随机交织器、S随机交织器和S改进型交织器的交织原理,对比分析了3种交织器的优缺点并给出了仿真结果。结果表明,交织器生成方式的不同将带来不同的Turbo码译码性能。  相似文献   

3.
Turbo码随机交织器的设计与实现   总被引:2,自引:1,他引:1  
Turbo码中交织器性能的优劣将直接影响到Turbo码的译码性能.在分析交织器的设计准则和类型的基础上,利用m序列的遍历性,设计了一种基于m序列的随机交织器,并给出了基于FPGA的硬件实现方案.仿真结果表明,该随机交织器在实现输入数据随机分布方面性能优异,并降低了Turbo码的译码延迟.  相似文献   

4.
卢明林  毕成余 《信息技术》2007,31(5):150-152
在Turbo码理论中,交织器的选择具有重要的地位。分析了Turbo码的编译码方案,然后讨论了交织器在Turbo码设计方面的重要作用,给出了几种交织器的实现方法,并模拟分析了其性能。  相似文献   

5.
在Turbo码理论中,交织器占有重要地位。论文分析了Turbo码的编译码方案,阐明了交织器在Turbo码设计中的重要作用,提出了几种交织器的设计实现方法,并在仿真的基础上对其性能进行了分析。  相似文献   

6.
分析了Turbo码的编译码方案,然后讨论了交织器在Turbo码设计方面的重要作用,给出了几种交织器的实现方法,并模拟分析了其性能。  相似文献   

7.
KBturbo码中交织器的设计   总被引:1,自引:0,他引:1  
已知比特(KB,Known Bits)turbo码是采用将KB周期性的插入到信息比特中,不显著增加系统复杂程度而较大提高turbo码译码性能。但因为一般采用了随机交织器,所以在引入KB方法时,产生了不等差错保护的问题。这个问题可以通过采用KB交织器,将KB在交织器中均匀分配来解决。仿真证实,以伪随机交织器和S随机交织器为基础的KB交织器可以显著提高系统性能。而且采用KB turbo码可以方便地实现速率适配,满足第三代移动通信系统的要求。  相似文献   

8.
Turbo码的一种并行译码方案及相应的并行结构交织器研究   总被引:1,自引:0,他引:1  
Turbo码基于MAP算法译码的递推计算所引入高的译码延迟限制了Turbo码在高速率数据传输中的应用。为了解决这个问题,该文提供了一种降低译码延迟的并行译码方法。并行处理方案的实现必须通过适当的交织以避免两个译码器对外信息读写的数据冲突。该文在分析了任意无冲突交织方式可能性的存在之后,给出了设计任意地适用于并行处理方案的S随机交织器的方法。仿真验证了并行译码方案的误比特性能。  相似文献   

9.
本文以移动信道的四状态Markov模型为基础,将Punctured卷积码(Punctured Convolutional Codes;PCC)用于快衰落移动信道下的图像传输系统中, 提出了通过对码率、母码约束长度和交织度这三种不同自由度的调整,实现图像传输的不等错误保护(Unequal Error Protection;UEP)方案.计算机模拟结果表明,所提出的方案具有明显的不等错误保护能力,可以满足在具有不等错误保护要求的移动环境下对传输图像质量的要求.  相似文献   

10.
Turbo码并行译码中无冲突交织器设计方案   总被引:1,自引:1,他引:0  
史尧  李博  王晓鸣 《通信技术》2010,43(8):137-139
交织器的结构可以影响到Turbo码的最小码距,进而影响其编码增益,最终对误比特率产生较大影响。交织器的主要功能就是随机化输入信息码序列,并让两个子编码模块在任何时刻,不会同时输出码重较轻的码字。交织器的随机性直接影响着Turbo码并行译码性能,针对现有无冲突交织器中随机性较小的特点,引入行内、行间交织等处理方式,进一步增加了交织表的随机性,以此提高Turbo码并行译码的性能,并给出了行内、行间交织设计实例。  相似文献   

11.
Product codes are generally used for progressive image transmission when random errors and packet loss (or burst errors) co-exist. However, the optimal rate allocation considering both component codes gives rise to high-optimization complexity. In addition, the decoding performance may be degraded quickly when the channel varies beyond the design point. In this paper, we propose a new unequal error protection (UEP) scheme for progressive image transmission by using rate-compatible punctured Turbo codes (RCPT) and cyclic redundancy check (CRC) codes only. By sophisticatedly interleaving each coded frame, the packet loss can be converted into randomly punctured bits in a Turbo code. Therefore, error control in noisy channels with different types of errors is equivalent to dealing with random bit errors only, with reduced turbo code rates. A genetic algorithm-based method is presented to further reduce the optimization complexity. This proposed method not only gives a better performance than product codes in given channel conditions but is also more robust to the channel variation. Finally, to break down the error floor of turbo decoding, we further extend the above RCPT/CRC protection to a product code scheme by adding a Reed-Solomon (RS) code across the frames. The associated rate allocation is discussed and further improvement is demonstrated.  相似文献   

12.
Unequal error protection (UEP) is essential when different portions of the source data do not contribute evenly to the overall duality of the decoded information. Conventional techniques achieve UEP by independent coding of the bit streams or by adopting conventional unequal error-protection codes. In this paper, we propose a practical alternative to the QPSK-based transmission systems with explicit UEP, such as GSM or IS-54 wireless transmission standards. In this scheme, the task of providing unequal protection is divided between the channel encoder and a nonuniform signal set, which discriminates in favor of the more important bits. The new approach allows for a simpler convolutional encoder and, hence, a less complex decoding procedure. Specifically, a reduction by more than half in the number of encoder states can easily be achieved using our scheme. Countering the degradation of the less important bits, we propose to adopt a high-rate punctured convolutional code to minimize the incurred transmission rate penalty. We also discuss a pilot sequence transmission scheme which realizes a coherent reception. Decentralizing the bit protection culminates in an extra degree of freedom which, in turn, introduces more flexibility into the system design  相似文献   

13.
In this paper, we combine two Joint Source Channel Decoding (JSCD) approaches and apply them to progressive JPEG image transmission. The first JSCD approach consists of optimizing the allocation of the channel code-rates to the different layers of the JPEG image, and is commonly referred as Unequal Error Protection (UEP). The second JSCD strategy exploits a priori probabilities obtained from source statistics as well as the residual redundancy of the source to improve channel decoding. Additionally, we propose an error resilient sub-categorization scheme for the DC layer so as to reduce the effect of the channel-induced distortion. The hybrid JSCD scheme is implemented with Rate Compatible Punctured Turbo Codes and also with the bandwidth efficient Rate Compatible Punctured Turbo Trellis Coded Modulation. Gains of over 10 dB in PSNR are obtained with the hybrid JSCD scheme as compared to a conventional JPEG image transmission scheme.  相似文献   

14.
In this paper, we consider progressive image transmission over differentially space‐time coded orthogonal frequency‐division multiplexing (OFDM) systems and treat the problem as one of optimal joint source‐channel coding (JSCC) in the form of unequal error protection (UEP), as necessitated by embedded source coding (e.g., SPIHT and JPEG 2000). We adopt a product channel code structure that is proven to provide powerful error protection and employ low‐complexity decision‐feedback decoding for differentially space‐time coded OFDM without assuming channel state information. For a given SNR, the BER performance of the differentially space‐time coded OFDM system is treated as the channel condition in the JSCC/UEP design via a fast product code optimization algorithm so that the end‐to‐end quality of reconstructed images is optimized in the average minimum MSE sense. Extensive image transmission experiments show that SNR/BER improvements can be translated into quality gains in reconstructed images. Moreover, compared to another non‐coherent detection algorithm, i.e., the iterative receiver based on expectation‐maximization algorithm for the space‐time coded OFDM systems, differentially space‐time coded OFDM systems suffer some quality loss in reconstructed images. With the efficiency and simplicity of decision‐feedback differential decoding, differentially space‐time coded OFDM is thus a feasible modulation scheme for applications such as wireless image over mobile devices (e.g., cell phones). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
16.
级联多个循环冗余校验(CRC)的LDPC译码算法有效地改善了译码的收敛特性。然而在其译码算法中,当CRC检测的整体漏检概率不够低时,出现误码平台。因此,该文提出了改进算法,通过减少在译码算法中CRC检测的次数,降低整体漏检概率,提高了误码性能。仿真表明改进的算法提高了误码性能,译码复杂度也增加不大。  相似文献   

17.
In this paper, theoretical upper bounds and computer simulation results on the error performance of multilevel block coded modulations for unequal error protection (UEP) and multistage decoding are presented. It is shown that nonstandard signal set partitionings and multistage decoding provide excellent UEP capabilities beyond those achievable with conventional coded modulation. The coding scheme is designed in such a way that the most important information bits have a lower error rate than other information bits. The large effective error coefficients, normally associated with standard mapping by set partitioning, are reduced by considering nonstandard partitionings of the underlying signal set. The bits-to-signal mappings induced by these partitionings allow the use of soft-decision decoding of binary block codes. Moreover, parallel operation of some of the staged decoders is possible, to achieve high data rate transmission, so that there is no error propagation between these decoders. Hybrid partitionings are also considered that trade off increased intraset distances in the last partition levels with larger effective error coefficients in the middle partition levels. The error performance of specific examples of multilevel codes over 8-PSK and 64-QAM signal sets are simulated and compared with theoretical upper bounds on the error performance  相似文献   

18.
The decoding of unequal error protection product codes, which are a combination of linear unequal error protection (UEP) codes and product codes, is addressed. A nonconstructive proof of the existence of a good error-erasure-decoding algorithm is presented; however, obtaining the decoding procedure is still an open research problem. A particular subclass of UEP product codes is considered, including a decoding algorithm that is an extension of the Blokh-Zyablov decoding algorithm for product codes. For this particular subclass the decoding problem is solved  相似文献   

19.
Channel coding and transmission aspects for wireless multimedia   总被引:5,自引:0,他引:5  
Multimedia transmission has to handle a variety of compressed and uncompressed source signals such as data, text, image, audio, and video. On wireless channels the error rates are high and joint source/channel coding and decoding methods are advantageous. Also, the system architecture has to adapt to the bad channel conditions. Several examples of a joint design are given. We especially advocate the use of rate-compatible punctured systematic recursive convolutional (RCPRSC) codes which are show to lead to a straightforward and versatile unequal error protection (UEP) design. In addition, the high-end receiver could use soft outputs and source-controlled channel decoding for even better performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号