首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对超宽带(UWB)系统易受无线网络信号干扰及传统的超宽带带通滤波器阻带较窄,不能有效抑制谐波的问题,提出了一种新型的UWB带通滤波器,该滤波器由两级交指梳状耦合谐振器级联组成,通过增加耦合指的个数来实现陷波特性,然后在两个交指谐振器的中间添加一个槽线锥形谐振器,使该滤波器具有抑制高次谐波特性,达到拓宽高阻带的效果,同时由于槽线谐振器的加入,陷波频段的抑制电平进一步提高.实验结果证明,所设计的滤波器既能保证3.1~10.6 GHz频段内的插入损耗小于3 dB,陷波频段为5.7~5.8 GHz,陷波频段的抑制电平高达-43 dB,同时又能拓宽高频阻带.  相似文献   

2.
Yang  G.M. Jin  R.H. Geng  J.P. 《Electronics letters》2006,42(25):1461-1463
A compact planar microstrip UWB bandpass filter is proposed. It is realised by cascading a lowpass filter and a highpass filter. A transmission line with U-shaped slots coupled with two DGS units on the back of the circuit board has the characteristic of highpass, while a periodic uniform DGS array has the characteristic of lowpass. Combining these two structures, a new UWB bandpass filter (BPF) is fabricated and measured. Measured results show that the proposed BPF has wide bandwidth from 3.0 to 10.9 GHz, all the measured return loss less than 13 dB in the passband. The BPF achieves a wide stopband with 18 dB attenuation up to 18.0 GHz  相似文献   

3.
Compact UWB Bandpass Filter Using Stub-Loaded Multiple-Mode Resonator   总被引:1,自引:0,他引:1  
A compact microstrip-line ultra-wideband (UWB) bandpass filter (BPF) using the proposed stub-loaded multiple-mode resonator (MMR) is presented. This MMR is formed by loading three open-ended stubs in shunt to a simple stepped-impedance resonator in center and two symmetrical locations, respectively. By properly adjusting the lengths of these stubs, the first four resonant modes of this MMR can be evenly allocated within the 3.1-to-10.6 GHz UWB band while the fifth resonant frequency is raised above 15.0GHz. It results in the formulation of a novel UWB BPF with compact-size and widened upper-stopband by incorporating this MMR with two interdigital parallel-coupled feed lines. Simulated and measured results are found in good agreement with each other, showing improved UWB bandpass behaviors with the insertion loss lower than 0.8dB, return loss higher than 14.3dB, and maximum group delay variation less than 0.64ns in the realized UWB passband  相似文献   

4.
A configuration of wideband bandpass filter (BPF) with multiple notched bands is presented. Proposed BPF is based on stepped-impedance resonator. By utilising dual stepped-impedance resonators in folded topology a rectangular-ring resonator is formed. Two notched bands in the passband are achieved without using asymmetrical coupled lines. In other words, the filter configuration is capable of producing notched bands. It should be noted that additional information on filter performance and design is presented. Measurement results are presented to approve propounded filter characteristics. The measured passband of the second proposed filter is from 3.68 to 10.2 GHz with insertion loss of –1.76 dB in the first passband at the centre frequency of 4.45 GHz. The measured notched band frequencies are about 5.45 and 7.95 GHz with rejection of –21.77 and –20.82 dB, respectively. The return loss in the passband is better than –11.4 dB.  相似文献   

5.
This paper presents a planar microstrip wideband dual mode Band-Pass Filter (BPF) from 2 GHz to 3.4 GHz with a notched band at 2.62 GHz. The dual mode band-pass filter consists of a ring resonator with two quarter-wavelength open-circuited stubs at ?? =90° and ?? =0°, respectively. A square perturbation stub has been put at the corner of the ring resonator to increase the narrow stopbands and improve the performance of selectivity. By using a parallel-coupled feed line, a narrow notched band is introduced at the required frequency and its Fractional BandWidth (FBW) is about 5%. The proposed filter has a narrow notched band and a wide pass-band with a sharp cutoff frequency characteristic, the attenuation rate for the sharp cutoff frequency responses is 297.17 dB/GHz (calculated from 1.959 GHz with ?34.43 dB to 2.065 GHz with ?2.93 dB) and 228.10 dB/GHz (calculated from 3.395 GHz with ?2.873 dB to 3.507 GHz with ?28.42 dB). This filter has the advantages of good insertion loss in both operating bands and two rejections of greater than 16 dB in the range of 1.59 GHz to 1.99 GHz and 3.49 GHz to 3.98 GHz. Having been presented in this article, the measurement results agree well with the simulation results, which validates our idea.  相似文献   

6.
This paper presents a new Ultra-WideBand (UWB) BandPass Filter (BPF) using half-wavelength (??/2) Stepped-Impedance Stub-Loaded Resonator (SISLR). Analytical equations derived by the even-odd mode analysis show the new filter has two tunable transmission zeros at both sides of the passband to provide a sharp rejection and seven transmission poles inside the passband to achieve U.S. UWB performance. For verification, a UWB BPF is designed, fabricated and measured. The measured results show that the fabricated filter has a -3 dB fractional bandwidth from 3.0 GHz to 10.9 GHz and its insertion loss less than 0.9 dB over the whole passband. Furthermore, the new filter exhibits a simple topology, sharp rejection, and deep stopband suppression.  相似文献   

7.
提出了一种具有双阻带特性的共面波导馈电超宽带天线。通过在辐射单元上开E型槽实现了3.75 GHz的第一个陷波结构,并在地板上开两条对称槽实现5.5 GHz的第二个陷波结构。文中提出的具有阻带特性超宽带天线的实测结果与仿真结果吻合较好。除了两个期望的阻带外其他超宽带频段内,该天线满足VSWR<2。同时给出了仿真辐射方向图和增益图。  相似文献   

8.
In this letter, we present a compact ultra-wideband bandpass filter (BPF) with a notch band in the BPF performance by using an embedded open-circuited stub structure. The filter mainly consists of conventional stepped impedance resonator (SIR) as the multiple-mode resonator and two enhanced coupled input/output lines. The bandwidth can be analyzed by using the image-parameter method to obtain the proper dimension of the coupled lines and verified by using electromagnetic (EM) simulation. The embedded open-circuited stub structure in the SIR is used to produce a narrow notched band at 5.8 GHz, which its frequency position and bandwidth can be tuned by its physical parameters. The measured 3 dB fractional bandwidth of 113.8% and narrow notched band with 25 dB rejection is achieved. Good agreement between the EM simulation and measurement is obtained.   相似文献   

9.
Liu  Y. Liang  C.H. Wang  Y.J. 《Electronics letters》2009,45(17):899-900
A compact planar microstrip ultra-wideband (UWB) bandpass filter is presented. The proposed UWB filter is realised by cascading a highpass filter (HPF) and a lowpass filter (LPF). Additional U-slot defected ground structure is adopted to improve the attenuation performance in the stop band. The HPF consists of inter-digital capacitors and a short-circuited stub. The LPF achieved by a hybrid microstrip and four backside slots on the ground plane is equivalent to a typical 9-pole stepped-impedance LPF. Combining these two structures, a new UWB bandpass filter is fabricated and measured. Measured results show that the proposed bandpass filter has a wide bandwidth from 3.1 to 11 GHz, and insertion loss is less than 1.2 dB over the most central passband. It also achieves a wide stop band with 20 dB attenuation up to 20 GHz.  相似文献   

10.
In this letter, a novel microstrip parallel-coupled line structure with two asymmetric loading stubs is proposed for notched band implementation in ultra-wideband (UWB) bandpass filter (BPF). The rejection band is introduced by adding asymmetric loading stubs to the two outer arms of three parallel-coupled lines. The lengths and the widths of the stubs can control the bandwidth of the notched filter and can set the notched band at a desired frequency. This structure has been applied to a single-stage UWB BPF in order to produce a narrow notched band inside its passband. The design is successfully realized in theory and verified by full-wave electromagnetic simulation and the experiment.  相似文献   

11.
An electromagnetic bandgap (EBG) embedded multiple-mode resonator (MMR) is proposed to constitute an upper-stopband-improved and size-miniaturized ultra-wideband (UWB) bandpass filter (BPF). This EBG-embedded MMR is studied to relocate its first three resonant modes within the 3.1-10.6GHz passband, whereas placing its 4th resonant mode at the coupling transmission zero of interdigital coupled-lines that drive this MMR at two sides. Meanwhile, the fifth resonant mode is rejected by virtue of the bandstop behavior of the EBG itself. Thus, a modified UWB BPF with widened upper-stopband, sharpened upper rejection skirt and lowered loss in the passband is finally constituted, designed and fabricated. The measured results demonstrate that the insertion loss is lower than 1.0 dB in the passband (4.0-10.6GHz) and higher than 15.0dB in the upper-stopband (12.0 to 20.0GHz) while the group delay variation in the passband is less than 0.2ns  相似文献   

12.
A coplanar waveguide (CPW) fed ultra-wideband (UWB) antenna with a notch band characteristic is presented for 2.4 GHz and UWB applications. The bandwidth is broadened by embedding two inverted L-shaped slots in the CPW ground and the notch band is achieved by etching a rectangle slot in the CPW ground. The notched band can be controlled by adjusting the length of the rectangle slot and the two inverted L-shaped slots. Experimental and numerical results show that the proposed antenna with compact size of 28 × 21 mm2, has an impedance bandwidth range from 2.38 GHz to 12.0 GHz for voltage standing-wave ratio (VSWR) less than 2, expect the notch band frequency 5.0–6.0 GHz for HIPERLAN/2, IEEE 802.11a (5.1–5.9 GHz) and C-band (4.4–5 GHz) for satellite and military applications.  相似文献   

13.
Ultra-wideband bandpass filter with hybrid microstrip/CPW structure   总被引:4,自引:0,他引:4  
A novel ultra-wideband (UWB) bandpass filter (BPF) is presented using the hybrid microstrip and coplanar waveguide (CPW) structure. A CPW nonuniform resonator or multiple-mode resonator (MMR) is constructed to produce its first three resonant modes occurring around the lower end, center, and higher end of the UWB band. Then, a microstrip/CPW surface-to-surface coupled line is formed and modeled to allocate the enhanced coupling peak around the center of this UWB band, i.e., 6.85GHz. As such, a five-pole UWB BPF is built up and realized with the passband covering the entire UWB band (3.1-10.6GHz). A predicted frequency response is finally verified by the experiment. In addition, the designed UWB filter, with a single resonator, only occupies one full-wavelength in length or 16.9mm.  相似文献   

14.
We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular‐ring‐shaped tuning stub that can be deployed in ultra‐wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band‐notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L‐ and J‐shaped parasitic elements. The antenna characteristics can be modified to tune the band‐notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L‐ and J‐shaped parasitic elements also provide the band‐rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.  相似文献   

15.
Hao  Z.-C. Hong  J.-S. 《Electronics letters》2008,44(20):1197-1198
A novel ultra-wideband (UWB) bandpass filter (BPF) using a broadside- coupled hairpin structure and multilayer organic liquid crystal polymer (LCP) technology is presented. To suppress stopband harmonic response, folded stepped impedance structures were adopted as hairpin resonators in the design. The proposed filter has been investigated numerically and experimentally. Multilayer LCP technology was used to implement designed UWB BPF. Good agreement between simulated and measured results of the proposed filter was observed. They show that the fabricated UWB BPF has a good performance, including a small insertion loss, a flat group delay with a variation within 0.1 ns in most of its passband, a wide stopband from 11.0 20.0 GHz with a high rejection level up to 20.0 dB, and a very compact size of 9.8 x 7.5 mm (0.36 lg x 0.27lg, where lg is the guided wavelength of 50 V microstrip line at 6.85 GHz).  相似文献   

16.
王斌  荆麟  黄文 《压电与声光》2017,39(3):452-455
针对超宽带系统易受窄带信号干扰的问题,设计了一种可以抑制无线局域网络(WLAN)和卫星通信信号干扰的双陷波超宽带带通滤波器。该滤波器的主要谐振结构由T型枝节加载的多模谐振器组成,改进的T型枝节增加了两个传输零点,同时减小了滤波器尺寸;通过耦合方开环谐振器,实现了两个陷波特性,调节谐振器尺寸,可以得到所需的陷波频率。测试结果表明,该滤波器的尺寸仅16.7mm×8.5mm,中心频率为6.9GHz,通带为3.0~10.8GHz,陷波中心频率在5.8GHz和8.04GHz,衰减最低点分别为-27dB和-18dB,仿真与测量结果有较好的一致性。  相似文献   

17.
提出了一种新型超宽带(UWB)陷波天线,该天线的结构由常规的圆形单极子天线演变而成。为获得超宽带特性,天线的辐射体被设计成渐变的笑脸形状。同时,通过在辐射贴片上开C形槽来实现陷波特性。合理选择C形槽的尺寸可有效去除超宽带频段内的无线局域网WLAN(5.150~5.825GHz)的干扰。仿真结果表明,天线在4.91~6.07GHz处形成了阻带特性(电压驻波比VSWR>2),天线结构新颖简单,适用于超宽带通信系统。  相似文献   

18.
An ultra-wideband (UWB: 3.1-10.6 GHz) bandpass filter (BPF) on coplanar waveguide (CPW) is proposed, designed and implemented. A nonuniform CPW multiple-mode resonator with short-circuited ends is constructed and its first three resonant modes are properly allocated around the lower-end, center and higher-end of the specified UWB band. This CPW resonator is then driven at two ends by two parallel-coupled CPW lines with dispersive inductive coupling degree. By properly reallocating the enhanced coupling peak toward the UWB's center, a five-pole CPW BPF with one full-wavelength can be eventually constituted. Its UWB bandpass performance is characterized and optimized on the basis of a simple transmission-line network. Predicted results are confirmed by experiment. Measured results achieve the insertion loss <1.5dB and group delay variation <0.35ns in the realized 3.3 to 10.4GHz UWB passband.  相似文献   

19.
With quad-notched band characteristic, a compact ultra-wideband (UWB) multiple-input-multiple-output antenna is proposed in the article. There are two identical monopole elements in the system. By inserting symmetrical L-shaped slots, complementary split-ring resonators) and C-shaped stubs in each element, four notched bands are achieved to filter 3.5 GHz WiMAX, 5.25 GHz lower WLAN, 5.8 GHz upper WLAN, and 7.5 GHz X-band. Without decoupling structures, the antennas were placed vertically to obtain high isolation. Results indicate that the antenna operates from 2.6 to 13 GHz except four rejected bands, and port isolation (S21) is better than ?25 dB, envelope correlation coefficient is below 0.002 in UWB spectrum frequency of 3.1–10.6 GHz.  相似文献   

20.
Ultra-Wideband (UWB) Bandpass Filter With Embedded Band Notch Structures   总被引:3,自引:0,他引:3  
A compact ultra-wideband (UWB) bandpass filter (BPF) with narrow notched (rejection) band in the UWB passband realized on a microstrip line is implemented and presented in this letter for use in wireless communication applications within the unlicensed UWB range set by the Federal Communications Commission (FCC). The filter consists of five short-circuited stubs separated by nonredundant connecting lines in order to exhibit a high selectivity filtering characteristic. The narrow notched (rejection) band was introduced by using a new technique which involves embedding open stubs in the first and last connecting lines in order to reject any undesired existing radio signal which may interfere with the determined UWB passband. The bandwidth of the notched filter can be controlled by adjusting the width of the stubs or the gaps or both. The length of the stubs can be tuned to select a specific frequency for the notched band. The embedded stubs can be used to excite single or double band-reject response. Two UWB BPFs with narrow notched band having a fractional bandwidth (FBW) of about 4.6% and 6.5% were realized theoretically and verified by full-wave EM simulation and the experiment. Excellent agreement between the predicted and measured results was obtained and is demonstrated  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号