首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mixed‐cation lead mixed‐halide perovskites are employed as the photoactive material in single‐layer solution‐processed photodetectors fabricated with coplanar asymmetric nanogap Al–Au and indium tin oxide–Al electrodes. The nanogap electrodes, bearing an interelectrode distance of ≈10 nm, are patterned via adhesion lithography, a simple, low‐cost, and high‐throughput technique. Different electrode shapes and sizes are demonstrated on glass and flexible plastic substrates, effectively engineering the device architecture, and, along with perovskite film and material optimization, paving the way toward devices with tunable operational characteristics. The optimized coplanar nanogap junction perovskite photodetectors show responsivities up to 33 A W?1, specific detectivity on the order of 1011 Jones, and response times below 260 ns, while retaining a low dark current (0.3 nA) under ?2 V reverse bias. These values outperform the vast majority of perovskite photodetectors reported so far, while avoiding the complicated fabrication steps involved in conventional multilayer device structures. This work highlights the promising potential of the proposed asymmetric nanogap electrode architecture for application in the field of flexible optoelectronics.  相似文献   

2.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

3.
The advent of special types of transparent electrodes, known as “ultrathin metal electrodes,” opens a new avenue for flexible and printable electronics based on their excellent optical transparency in the visible range while maintaining their intrinsic high electrical conductivity and mechanical flexibility. In this new electrode architecture, introducing metal nucleation inducers (MNIs) on flexible plastic substrates is a key concept to form high‐quality ultrathin metal films (thickness ≈ 10 nm) with smooth and continuous morphology. Herein, this paper explores the role of “polymeric” MNIs in fabricating ultrathin metal films by employing various polymers with different surface energies and functional groups. Moreover, a scalable approach is demonstrated using the ionic self‐assembly on typical plastic substrates, yielding large‐area electrodes (21 × 29.7 cm2) with high optical transmittance (>95%), low sheet resistance (<10 Ω sq?1), and extreme mechanical flexibility. The results demonstrate that this new class of flexible and transparent electrodes enables the fabrication of efficient polymer light‐emitting diodes.  相似文献   

4.
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%.  相似文献   

5.
Nanomeshed forms of metal have emerged as a promising biocompatible electrode material for future soft bioelectronics. However, metal/electrolyte interfaces are intrinsically capacitive, severely limiting their electrochemical performance, especially for scaled electrodes, which are essential for high‐resolution brain mapping. Here, an innovative bilayer nanomesh approach is demonstrated to address this limitation while preserving the nanomesh advantage. Electroplating low‐impedance coatings on a gold nanomesh template achieves an impedance < 30 kΩ at 1 kHz and a charge injection limit of 1 mC cm? 2 for 80 × 80 µm2 microelectrodes, a 4.3× and 12.8× improvement over uncoated electrodes, respectively, while maintaining a transparency of ≈70% at 550 nm. Systematic characterization of transmittance, impedance, charge injection limits, cyclic charge injection, and light‐induced artifacts reveal an encouraging performance of the bilayer nanomesh microelectrodes. The bilayer nanomesh approach presented here is expected to enable next‐generation large‐scale transparent bioelectronics with broad utility in biology.  相似文献   

6.
Fabricating thermoelectric generators (TEGs) using the screen‐printing process has advantages, including mass production, device scalability, and system applicability. However, the thick film formed through the process typically has low film density, and reduced performance, because of the presence of pores in the film created by the vaporization of the resin during high‐temperature annealing. During the soldering process used for thermoelectric module fabrication, the printed solder infiltrates into the screen‐printed electrodes through the micropores in the electrodes, causing cracks of the electrode film and an increase in resistivity. In this paper, an ultraviolet radiation (UV)‐curable process for screen‐printed electrodes is reported. The paste for the electrodes is synthesized by mixing Ag flakes that can be cured at low temperature with a UV resin. Scanning electron microscope images show that the UV‐curing process significantly reduces pores and thereby results in a smooth‐surfaced electrode layer. The film density after crystallization is also enhanced. TEGs composed of 72 couples with UV‐curable Ag electrodes generate a high power density of ≈6.69 mW cm?2 at a temperature difference of 25 °C; the device resistance is ≈0.75 Ω, and the figure of merit of the device is recorded to be 0.57, which is the highest among the printed TEGs.  相似文献   

7.
Room‐temperature solution‐processed flexible photodetectors with spectral response from 300 to 2600 nm are reported. Solution‐processed polymeric thin film with transparency ranging from 300 to 7000 nm and superior electrical conductivity as the transparent electrode is reported. Solution‐processed flexible broadband photodetectors with a “vertical” device structure incorporating a perovskite/PbSe quantum dot bilayer thin film based on the above solution‐processed transparent polymeric electrode are demonstrated. The utilization of perovskite/PbSe quantum dot bilayer thin film as the photoactive layer extends spectral response to infrared region and boosts photocurrent densities in both visible and infrared regions through the trap‐assisted photomultiplication effect. Operated at room temperature and under an external bias of ‐1 V, the solution‐processed flexible photodetectors exhibit over 230 mA W‐1 responsivity, over 1011 cm Hz1/2/W photodetectivity from 300 to 2600 nm and ≈70 dB linear dynamic ranges. It is also found that the solution‐processed flexible broadband photodetectors exhibit fast response time and excellent flexibility. All these results demonstrate that this work develop a facile approach to realize room‐temperature operated ultrasensitive solution‐processed flexible broadband photodetectors with “vertical” device structure through solution‐processed transparent polymeric electrode.  相似文献   

8.
In this paper, fabrication of a non‐continuous silicon dioxide layer from a silica nanosphere solution followed by the deposition of an aluminium film is shown to be a low‐cost, low‐thermal‐budget method of forming a high‐quality back surface reflector (BSR) on crystalline silicon (c‐Si) thin‐film solar cells. The silica nanosphere layer has randomly spaced openings which can be used for metal‐silicon contact areas. Using glass/SiN/p+nn+ c‐Si thin‐film solar cells on glass as test vehicle, the internal quantum efficiency (IQE) at long wavelengths (>900 nm) is experimentally demonstrated to more than double by the implementation of this BSR, compared to the baseline case of a full‐area Al film as BSR. The improved optical performance of the silica nanosphere/aluminium BSR is due to reduced parasitic absorption in the Al film. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Copper has attracted significant interests as an abundant and low‐cost alternative material for flexible transparent conducting electrodes (FTCEs). However, Cu‐based FTCEs still present unsolved technical issues, such as their inferior light transmittance and oxidation durability compared to conventional indium tin oxide (ITO) and silver metal electrodes. This study reports a novel technique for fabricating highly efficient FTCEs composed of a copper ultrathin film sandwiched between zinc oxides, with enhanced transparency and antioxidation performances. A completely continuous and smooth copper ultrathin film is fabricated by a simple room‐temperature reactive sputtering process involving controlled nitrogen doping (<1%) due to a dramatic improvement in the wettability of copper on zinc oxide surfaces. The electrode based on the nitrogen‐doped copper film exhibits an optimized average transmittance of 84% over a spectral range of 380 ?1000 nm and a sheet resistance lower than 20 Ω sq?1, with no electrical degradation after exposure to strong oxidation conditions for 760 h. Remarkably, a flexible organic solar cell based on the present Cu‐based FTCE achieves a power conversion efficiency of 7.1%, clearly exceeding that (6.6%) of solar cells utilizing the conventional ITO film, and this excellent performance is maintained even in almost completely bent configurations.  相似文献   

10.
A laser‐based patterning technique—compatible with flexible, temperature‐sensitive substrates—for the production of large area reduced graphene oxide micromesh (rGOMM) electrodes is presented. The mesh patterning can be accurately controlled in order to significantly enhance the electrode transparency, with a subsequent slight increase in the sheet resistance, and therefore improve the tradeoff between transparency and conductivity of reduced graphene oxide (rGO) layers. In particular, rGO films with an initial transparency of ≈20% are patterned, resulting in rGOMMs films with a ≈59% transmittance and a sheet resistance of ≈565 Ω sq?1, that is significantly lower than the resistance of ≈780 Ω sq?1, exhibited by the pristine rGO films at the same transparency. As a proof‐of‐concept application, rGOMMs are used as the transparent electrodes in flexible organic photovoltaic (OPV) devices, achieving power conversion efficiency of 3.05%, the highest ever reported for flexible OPV devices incorporating solution‐processed graphene‐based electrodes. The controllable and highly reproducible laser‐induced patterning of rGO hold enormous promise for both rigid and flexible large‐scale organic electronic devices, eliminating the lag between graphene‐based and indium–tin oxide electrodes, while providing conductivity and transparency tunability for next generation flexible electronics.  相似文献   

11.
Highly efficient and bendable organic solar cells (OSCs) are fabricated using solution‐processed silver nanowire (Ag NW) electrodes. The Ag NW films were highly transparent (diffusive transmittance ≈ 95% at a wavelength of 550 nm), highly conductive (sheet resistance ≈ 10 Ω sq?1), and highly flexible (change in resistance ≈ 1.1 ± 1% at a bending radius of ≈200 μm). Power conversion efficiencies of ≈5.80 and 5.02% were obtained for devices fabricated on Ag NWs/glass and Ag NWs/poly(ethylene terephthalate) (PET), respectively. Moreover, the bendable devices fabricated using the Ag NWs/PET films decrease slightly in their efficiency (to ≈96% of the initial value) even after the devices had been bent 1000 times with a radius of ≈1.5 mm.  相似文献   

12.
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have typically been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. However, ITO is relatively expensive (due to limited abundance of Indium), brittle, unstable, and inflexible; moreover, ITO transparency drops rapidly for wavelengths above 1000 nm. Motivated by a need for transparent conductors with comparable (or better) RS at a given T, as well as flexible structures, several alternative material systems have been investigated. Single‐layer graphene (SLG) or few‐layer graphene provide sufficiently high transparency (≈97% per layer) to be a potential replacement for ITO. However, large‐area synthesis approaches, including chemical vapor deposition (CVD), typically yield films with relatively high sheet resistance due to small grain sizes and high‐resistance grain boundaries (HGBs). In this paper, we report a hybrid structure employing a CVD SLG film and a network of silver nanowires (AgNWs): RS as low as 22 Ω/□ (stabilized to 13 Ω/□ after 4 months) have been observed at high transparency (88% at λ = 550 nm) in hybrid structures employing relatively low‐cost commercial graphene with a starting RS of 770 Ω/□. This sheet resistance is superior to typical reported values for ITO, comparable to the best reported TCEs employing graphene and/or random nanowire networks, and the film properties exhibit impressive stability under mechanical pressure, mechanical bending and over time. The design is inspired by the theory of a co‐percolating network where conduction bottlenecks of a 2D film (e.g., SLG, MoS2) are circumvented by a 1D network (e.g., AgNWs, CNTs) and vice versa. The development of these high‐performance hybrid structures provides a route towards robust, scalable and low‐cost approaches for realizing high‐performance TCE.  相似文献   

13.
Here, the surface functionalization of CdSe and CdSe/CdS core/shell nanocrystals (NCs) with compact chloride and indium‐chloride‐complex ligands is reported. The ligands provide not only short interparticle distances but additionally control doping and passivation of surface trap states, leading to enhanced electronic coupling in NC‐based arrays. The solids based on these NCs show an excellent electronic transport behavior after heat treatment at the relatively low temperature of 190 °C. Indeed, the indium‐chlorido‐capped 4.5 nm CdSe NC based thin‐film field‐effect transistor reaches a saturation mobility of μ = 4.1 cm2 (V s)?1 accompanied by a low hysteresis, while retaining the typical features of strongly quantum confined semiconductor NCs. The capping with chloride ions preserves the high photoluminescence quantum yield ( ≈ 66%) of CdSe/CdS core/shell NCs even when the CdS shell is relatively thin (six monolayers). The simplicity of the chemical incorporation of chlorine and indium species via solution ligand exchange, the efficient electronic passivation of the NC surface, as well as their high stability as dispersions make these materials especially attractive for wide‐area solution‐processable fabrication of NC‐based devices.  相似文献   

14.
A one‐pot and readily practical approach is described for the preparation of superstrong, ultrathin, free‐standing single‐walled carbon nanotube (SWNT) films. The SWNT films, with controlled thicknesses of tens to hundreds of nanometers, are prepared from commonly commercialized SWNTs via a wet process. The SWNTs could be easily transferred onto any substrates after self‐releasing from filter membranes without further treatment. The obtained films exhibit excellent performances with sheet resistance of 223 Ω sq?1 and a transparency of 90% at 550 nm was obtained. Most important is that the as‐prepared free‐standing SWNT ultrathin films showed extremely high tensile strength up to 850 MPa for only about a 20‐nm thick film, which has great significance for practical applications, for example, as flexible electrode materials. The SWNT film is used to construct a capacitive touch‐screen prototype, which has a highly sensitive and quick signal touch response.  相似文献   

15.
Hybrid PbS nanocrystal/C60 fullerite photodetectors are fabricated using a simple one‐step drop casting procedure onto pre‐patterned interdigitated electrodes. The devices exhibit a broad spectral response from the near UV through to the near infrared yielding a detectivity, D*, of above 1010 Jones from 400 nm to ≈1050 nm. The ability to further extend the spectral response to wavelengths ≈1350 nm in the near infrared via tuning of the PbS nanocrystal diameter is also demonstrated. The dynamic responses of the devices are presented, exhibiting a fast photocurrent rise time (<40 ns) followed by a long bi‐exponential decay with characteristic lifetimes of τ1 = 5.3 μs ± 0.1 μs and τ2 = 37.8 μs ± 0.7 μs. These devices, which have a detectivity approaching that of commercial detectors, a broader spectral response, and a fast rise time, offer an attractive low‐cost solution for large‐area broadband photodetectors.  相似文献   

16.
Solution processed silver nanowire (Ag NW) films are introduced as transparent electrodes for thin‐film solar cells. Ag NW electrodes were processed by doctor blade‐coating on glass substrates at moderate temperatures (less than 100 °C). The morphological, optical, and electrical characteristics of these electrodes were investigated as a function of processing parameters. For solar‐cell application, Ag NW electrodes with an average transparency of 90% between 450 and 800 nm and a sheet resistivity of ≈10 Ω per square were chosen. The performance of poly(3‐hexylthiophen‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) solar cells on Ag NW electrodes was found to match the performance of otherwise identical cells on indium tin oxide. Overall, P3HT:PCBM solar cells with an efficiency of 2.5% on transparent Ag NW electrodes have been realized.  相似文献   

17.
Solution‐processable thin‐film dielectrics represent an important material family for large‐area, fully‐printed electronics. Yet, in recent years, it has seen only limited development, and has mostly remained confined to pure polymers. Although it is possible to achieve excellent printability, these polymers have low (≈2–5) dielectric constants (εr). There have been recent attempts to use solution‐processed 2D hexagonal boron nitride (h‐BN) as an alternative. However, the deposited h‐BN flakes create porous thin‐films, compromising their mechanical integrity, substrate adhesion, and susceptibility to moisture. These challenges are addressed by developing a “one‐pot” formulation of polyurethane (PU)‐based inks with h‐BN nano‐fillers. The approach enables coating of pinhole‐free, flexible PU+h‐BN dielectric thin‐films. The h‐BN dispersion concentration is optimized with respect to exfoliation yield, optical transparency, and thin‐film uniformity. A maximum εr ≈ 7.57 is achieved, a two‐fold increase over pure PU, with only 0.7 vol% h‐BN in the dielectric thin‐film. A high optical transparency of ≈78.0% (≈0.65% variation) is measured across a 25 cm2 area for a 10 μm thick dielectric. The dielectric property of the composite is also consistent, with a measured areal capacitance variation of <8% across 64 printed capacitors. The formulation represents an optically transparent, flexible thin‐film, with enhanced dielectric constant for printed electronics.  相似文献   

18.
As a fast prototyping technique, direct writing of flexible electronics is gaining popularity for its low‐cost, simplicity, ultrahigh portability, and ease of use. However, the latest handwritten circuits reported either have relative low conductivity or require additional post‐treatment, keeping this emerging technology away from end‐users. Here, a one‐step react‐on‐demand (RoD) method for fabricating flexible circuits with ultralow sheet resistance, enhanced safety, and durability is proposed. With the special functionalized substrate, a real‐time 3D synthesis of silver plates in microscale is triggered on‐demand right beneath the tip in the water‐swelled polyvinyl alcohol (PVA) coating, forming a 3D metal–polymer hybrid structure of ≈7 µm with one single stroke. The as‐fabricated silver traces show an enhanced durability and ultralow sheet resistance down to 4 mΩ sq?1 which is by far the lowest sheet resistance reported in literatures achieved by direct writing. Meanwhile, PVA seal small particles inside the film, adding additional safety to this technology. Since neither nanomaterials nor a harsh fabrication environment are required, the proposed method remains low cost, user friendly, and accessible to end users. With little effort, the RoD approach can be extended to various printing systems, offering a particle‐free, sintering‐free solution for high‐resolution, high‐speed production of flexible electronics.  相似文献   

19.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

20.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号